Aspects of Quantum Computational Universality in the Measurement-Based Models

基于测量的模型中量子计算普遍性的各个方面

基本信息

  • 批准号:
    1333903
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

This research will investigate important issues of quantum computational universality in measurement-based quantum computation (MBQC), explore connections of MBQC to ideas in statistical mechanics and condensed matter physics, and other quantum computational models. Specifically, the Affleck-Kennedy-Lieb-Tasaki (AKLT) models supply a rich playground for exploring new universal resource states and for understanding the intricate relations of quantum computational universality to percolation, spatial connectivity, magnetic order, and phase transitions in computational power. The long standing open question of the existence of a finite spectral of any two-dimensional rotationally symmetric (including AKLT) Hamiltonians is important also for the stability of generating related resource states by cooling. This will be studied with both analytic and numerical means. The research also includes searching for new types of resource states and developing model Hamiltonians whose thermal states can be used for quantum computation without the need to switch off interactions. Furthermore, this program studies how topological order can be of use to quantum computation, and conversely, how MBQC offers an efficient means to create a large class of topologically ordered states. Intellectual Merit: MBQC is one of the several models for building quantum computers. Essentially, all that is needed is a suitable highly entangled resource state to begin with and the ability to perform local measurements. This approach of realizing a quantum computer is promising with several physical systems, such as ultracold atoms in optical lattices and photons, complementing other approaches of implementing quantum computation. MBQC also provides a conceptual framework for answering fundamental questions in quantum computation and for bridging to other areas of research. The questions that will be addressed include: (1) What entangled states can qualify as an universal resource and can they arise as unique ground states of physically reasonable Hamiltonians? A complete understanding may lead to novel characterization of states of matter in terms of computational capability. (2) Is there a generalized Haldane conjecture in higher dimensions and how to test it? Tackling the long standing open question of the spectral gaps of two-dimensional AKLT Hamiltonians will give insight to a possible generalized Haldane conjecture in 2D and pave the road for probing richer phases in isotropic spin Hamiltonians in higher dimensions. (3) Can topological order provide insight to the quest of new resource states? (4) Are there advantages over others that the MBQC model offers? The research findings of MBQC from this program will not only advance our knowledge on various aspects of quantum computation and its connection to ideas in condensed matter physics and statistical mechanics, but also have potential impact on future quantum computer technology. Broader Impacts : The PI is taking the initiative in organizing a forum for discussing scientific results in quantum information science and stimulating collaboration across disciplines at Stony Brook University. He will integrate his research on quantum computation in the courses that he is currently and will be developing for both undergraduate and graduate students. This project will also include training of a graduate student and mentoring of a postoctoral researcher.
这项研究将研究基于测量的量子计算(MBQC)中量子计算普遍性的重要问题,探索MBQC与统计力学和凝聚态物理以及其他量子计算模型中的思想的联系。具体来说,Affleck-Kennedy-Lieb-Tasaki (AKLT) 模型为探索新的通用资源状态以及理解量子计算通用性与渗透、空间连通性、磁序和计算能力相变之间的复杂关系提供了丰富的平台。任何二维旋转对称(包括 AKLT)哈密顿量的有限谱的存在这一长期悬而未决的问题对于通过冷却生成相关资源状态的稳定性也很重要。这将通过分析和数值方法进行研究。该研究还包括寻找新型资源状态和开发哈密顿量模型,其热状态可用于量子计算而无需关闭相互作用。此外,该项目还研究拓扑序如何用于量子计算,以及相反,MBQC 如何提供一种有效的方法来创建一大类拓扑有序态。智力优点:MBQC 是构建量子计算机的几种模型之一。本质上,所需要的只是一个合适的高度纠缠的资源状态以及执行本地测量的能力。这种实现量子计算机的方法在多种物理系统(例如光学晶格和光子中的超冷原子)中很有前景,是对实现量子计算的其他方法的补充。 MBQC 还提供了一个概念框架,用于回答量子计算中的基本问题以及与其他研究领域的衔接。将要解决的问题包括:(1)什么纠缠态可以称为通用资源,它们可以作为物理合理的哈密顿量的独特基态出现吗?完整的理解可能会导致在计算能力方面对物质状态进行新颖的表征。 (2)更高维度是否存在广义霍尔丹猜想以及如何检验?解决二维 AKLT 哈密顿量的光谱间隙这一长期悬而未决的问题,将有助于深入了解二维中可能的广义霍尔丹猜想,并为探索更高维度的各向同性自旋哈密顿量的更丰富的相铺平道路。 (3) 拓扑顺序能否为探索新的资源状态提供洞察力? (4)MBQC模型与其他模型相比有什么优势? MBQC 该项目的研究成果不仅将增进我们对量子计算各个方面的了解及其与凝聚态物理和统计力学思想的联系,而且对未来的量子计算机技术具有潜在影响。更广泛的影响:PI 正在主动组织一个论坛,讨论量子信息科学的科学成果,并促进石溪大学的跨学科合作。他将把他在量子计算方面的研究融入到他目前正在为本科生和研究生开发的课程中。该项目还将包括对研究生的培训和对博士后研究员的指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tzu-Chieh Wei其他文献

Tzu-Chieh Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tzu-Chieh Wei', 18)}}的其他基金

Digital Quantum Simulations of Ground States and Dynamics: Analysis and Realizations
基态和动力学的数字量子模拟:分析和实现
  • 批准号:
    2310614
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Toolkit for Characterizing Noisy Quantum Processors and Windows of Quantum Advantage
用于表征噪声量子处理器和量子优势窗口的工具包
  • 批准号:
    1915165
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Aspects of Quantum Computational Universality in the Measurement-Based Models
基于测量的模型中量子计算普遍性的各个方面
  • 批准号:
    1620252
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Exploration of classical-quantum and easy-hard boundaries
经典量子和易难边界的探索
  • 批准号:
    1314748
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

用户多样化驱动的复合型多方盲量子计算研究
  • 批准号:
    62271436
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
硅基单原子空穴型比特的量子计算芯片
  • 批准号:
    92165210
  • 批准年份:
    2021
  • 资助金额:
    350 万元
  • 项目类别:
    重大研究计划
基于实验和理论计算的乌头碱型生物碱模拟炮制研究
  • 批准号:
    81102807
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于积累型砷化镓门型量子点的固态量子比特
  • 批准号:
    11174267
  • 批准年份:
    2011
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
石墨烯可扩展门型量子点中自旋量子比特的实现与操控研究
  • 批准号:
    10934006
  • 批准年份:
    2009
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目

相似海外基金

Aspects of Quantum Computational Universality in the Measurement-Based Models
基于测量的模型中量子计算普遍性的各个方面
  • 批准号:
    1620252
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
2011 Computational Aspects - Biomolecular NMR Gordon Research Conference
2011 计算方面 - 生物分子 NMR 戈登研究会议
  • 批准号:
    8128124
  • 财政年份:
    2011
  • 资助金额:
    $ 21万
  • 项目类别:
Dissipative Quantum Molecular Dynamics: Density Matrix Theory and Computational Aspects
耗散量子分子动力学:密度矩阵理论和计算方面
  • 批准号:
    0607913
  • 财政年份:
    2006
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
First Principles Quantum Molecular Dynamics: Density Matrix Theory and Computational Aspects
量子分子动力学第一原理:密度矩阵理论和计算方面
  • 批准号:
    9877192
  • 财政年份:
    1999
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Quantum Chemical Dynamics: Theoretical and Computational Aspects
量子化学动力学:理论和计算方面
  • 批准号:
    9630056
  • 财政年份:
    1996
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了