Collaborative Research: SI2-CHE: Development and Deployment of Chemical Software for Advanced Potential Energy Surfaces
合作研究:SI2-CHE:先进势能表面化学软件的开发和部署
基本信息
- 批准号:1265889
- 负责人:
- 金额:$ 22.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-15 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An international team consisting of Teresa Head-Gordon and Martin Head-Gordon (University of California, Berkeley), Paul Nerenberg (Claremont McKenna College), David Case (Rutgers University), Jay Ponder (Washington University), Mark Tuckerman (New York University) with their UK collaborators: Lorna Smith and Neil Chue Hong (University of Edinburgh), Chris-Kriton Skylaris and Jonathan W. Essex (University of Southampton), Ilian Todorov (Daresbury Laboratory), Mario Antonioletti (EPCC) are are supported through the SI2-CHE program to develop and deploy robust and sustainable software for advanced potential energy surfaces. The greater accuracy introduced by improvements in the new generation of potential energy surfaces opens up several challenges in their manifestation as algorithms and software on current or emergent hardware platforms that in turn limits their wide adoption by the computational chemistry community. The research team is overcoming these obstacles via multiple but integrated directions: (1) to optimally implement advanced potential energy surfaces across multi-core and GPU enabled systems, (2) to develop a hierarchy of advanced polarizable models that alter the tradeoff between accuracy and computational speed,(3) to create new multiple time stepping methods; (4) to write a Quantum Mechanics/Molecular Mechanics (QM/MM ) application programing interface (API) that fully supports mutual polarization, (5) to adopt software best practices to ensure growth of a self-sustaining community and (6) to provide exemplar calculations with the new software in the several emerging application areas.Molecular simulation and quantum chemistry software is an integral part of chemistry and chemical biology, and has been broadly adopted by academic researchers and industry scientists. Next generation scientific breakthroughs that utilize chemical software will be enabled by the deployment of state of the art theoretical models and algorithms that are translated into a sustainable software framework rapidly implemented on emergent high performance computing platforms. Potential energy surfaces describe the interactions between atoms. Advanced and highly accurate potential energy surfaces encounter software-related obstacles that inhibit their application to grand challenge chemistry problems. This UK and US consortium, representing a broad cross section of the computational chemistry software community, is working to directly tackle these obstacles. This US and UK collaboration between universities and High Performance Computing centers works to endure that chemical software investments made in advanced potential energy surface models has a long term payoff in community sustainability and the training of the next generation of scientists. Outreach and training workshops are organized around the emergence of the advanced potential energy software including an introductory molecular simulation software boot camp for undergraduate students.The US based investigators are supported by the CHE and ACI divisions within NSF; the UK based investigators are supported by the EPSRC.
国际团队由 Teresa Head-Gordon 和 Martin Head-Gordon(加州大学伯克利分校)、Paul Nerenberg(克莱蒙特麦肯纳学院)、David Case(罗格斯大学)、Jay Ponder(华盛顿大学)、Mark Tuckerman(纽约大学)组成)与他们的英国合作者:Lorna Smith 和 Neil Chue Hong(爱丁堡大学)、Chris-Kriton Skylaris 和 Jonathan W. Essex (南安普顿大学)、Ilian Todorov(达斯伯里实验室)、Mario Antonioletti (EPCC) 通过 SI2-CHE 计划获得支持,开发和部署用于先进势能表面的强大且可持续的软件。 新一代势能面的改进带来了更高的准确性,这在当前或新兴硬件平台上的算法和软件表现方面带来了一些挑战,这反过来又限制了它们在计算化学界的广泛采用。研究团队正在通过多个但综合的方向克服这些障碍:(1) 在多核和 GPU 支持的系统上优化实现先进的势能表面,(2) 开发先进的极化模型层次结构,改变精度和性能之间的权衡。计算速度,(3)创建新的多时间步进方法; (4) 编写完全支持相互极化的量子力学/分子力学 (QM/MM) 应用程序编程接口 (API),(5) 采用软件最佳实践以确保自我维持社区的发展,以及 (6)使用新软件在几个新兴应用领域提供示例计算。分子模拟和量子化学软件是化学和化学生物学的组成部分,已被学术研究人员和行业科学家广泛采用。利用化学软件的下一代科学突破将通过部署最先进的理论模型和算法来实现,这些理论模型和算法将被转化为在新兴高性能计算平台上快速实施的可持续软件框架。势能面描述了原子之间的相互作用。先进且高精度的势能表面遇到了与软件相关的障碍,阻碍了其应用于重大挑战化学问题。这个代表计算化学软件社区广泛领域的英国和美国联盟正在努力直接解决这些障碍。 美国和英国大学和高性能计算中心之间的合作致力于确保对先进势能表面模型的化学软件投资能够在社区可持续发展和下一代科学家的培训方面获得长期回报。围绕先进势能软件的出现组织了外展和培训研讨会,包括针对本科生的介绍性分子模拟软件训练营。美国研究人员得到了 NSF CHE 和 ACI 部门的支持;英国调查人员得到 EPSRC 的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Tuckerman其他文献
Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
多类型点云自动编码器:分子构象和姿态的完整等变嵌入
- DOI:
10.1016/s0031-9422(03)00182-1 - 发表时间:
2024-05-22 - 期刊:
- 影响因子:3.8
- 作者:
Michael Kilgour;J. Rogal;Mark Tuckerman - 通讯作者:
Mark Tuckerman
Crossbar
横杆
- DOI:
10.1007/978-0-387-09766-4_2363 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
G. Steele;Xiaowei Shen;J. Torrellas;Mark Tuckerman;E. Bohm;L. Kalé;Glenn Martyna;P. Yew;H. Hofstee;Matthew Sottile;Bruce Hendrickson;B. Chamberlain;Martin Schulz;Charles E. Leiserson;Thomas L. Sterling;Daniel P. Siewiorek;Edward F. Gehringer;R. W. Numrich;Cédric Bastoul;R. Geijn;JesperLarsson Träff;Dhabaleswar K. P;a;a;S. Sur;Hari Subramoni;K. K;alla;alla;Pritish Jetley;P. Worley;M. Vertenstein;A. Craig;Geoff Fox;J. Hart;Michael G. Burke;K. Knobe;Ryan Newton;Vivek Sarkar;John Reppy;P. Garcia;J. Swensen;M’hamed Souli;T. Prince;Jason Wang;Michael Dungworth;James Harrell;Michael Levine;Stephen Nelson;Steven Oberlin;Steven P. Reinhardt;J. Schwarzmeier;L. Kaplan;J. Brooks;G. Kirschner;D. Abts;A. W. Roscoe;Jim Davies;M. Denneau;Mike Schlansker - 通讯作者:
Mike Schlansker
Mark Tuckerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Tuckerman', 18)}}的其他基金
DMREF: Accelerated discovery of metastable but persistent contact insecticide crystal polymorphs for enhanced activity and sustainability
DMREF:加速发现亚稳态但持久的接触性杀虫剂晶体多晶型物,以增强活性和可持续性
- 批准号:
2118890 - 财政年份:2022
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
Collaborative Research:CDS&E:D3SC:Topology, Rare-event Simulation, and Machine Learning as Routes to Predicting Molecular Crystal Structures and Understanding Their Phase Behav
合作研究:CDS
- 批准号:
1955381 - 财政年份:2020
- 资助金额:
$ 22.54万 - 项目类别:
Continuing Grant
Development of rare-event sampling techniques for predicting structures and free energies of crystal polymorphs and oligopeptides
开发罕见事件采样技术来预测晶体多晶型物和寡肽的结构和自由能
- 批准号:
1565980 - 财政年份:2016
- 资助金额:
$ 22.54万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Development of Design Rules for High Hydroxide Transport in Polymer Architectures
DMREF:协作研究:聚合物结构中高氢氧化物传输设计规则的开发
- 批准号:
1534374 - 财政年份:2015
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
Development of computational techniques for predicting the free energetics of crystalline polymorphs and complex molecules
开发用于预测晶体多晶型物和复杂分子的自由能学的计算技术
- 批准号:
1301314 - 财政年份:2013
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
Development and application of novel methods for enhanced conformational sampling, free energy prediction, and hybrid QM/MM calculations
增强构象采样、自由能预测和混合 QM/MM 计算新方法的开发和应用
- 批准号:
1012545 - 财政年份:2010
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
Novel methodologies for conformational sampling and QM/MM simulations in complex systems
复杂系统中构象采样和 QM/MM 模拟的新方法
- 批准号:
0704036 - 财政年份:2007
- 资助金额:
$ 22.54万 - 项目类别:
Continuing Grant
Acquisition of Large-scale Parallel Computational Resources for Biological and Materials Modeling
获取用于生物和材料建模的大规模并行计算资源
- 批准号:
0420870 - 财政年份:2004
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
New conformational sampling and large-scale electronic structure techniques: applications to polypeptide structure, proton transport, and dynamics of silicate melts
新构象采样和大规模电子结构技术:在多肽结构、质子传输和硅酸盐熔体动力学中的应用
- 批准号:
0310107 - 财政年份:2003
- 资助金额:
$ 22.54万 - 项目类别:
Continuing Grant
Collaborative Research: ITR/AP: Novel Scalable Simulation Techniques for Chemistry, Materials Science and Biology
合作研究:ITR/AP:化学、材料科学和生物学的新型可扩展模拟技术
- 批准号:
0121375 - 财政年份:2001
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
- 批准号:
2114580 - 财政年份:2020
- 资助金额:
$ 22.54万 - 项目类别:
Continuing Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2039142 - 财政年份:2020
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2001752 - 财政年份:2019
- 资助金额:
$ 22.54万 - 项目类别:
Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743180 - 财政年份:2018
- 资助金额:
$ 22.54万 - 项目类别:
Continuing Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743191 - 财政年份:2018
- 资助金额:
$ 22.54万 - 项目类别:
Continuing Grant