CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
基本信息
- 批准号:1254840
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The de Wijs process (also known as the Gaussian free field in statistical physics) is a fundamental spatial process that arises as the scaling limit of lattice based Gaussian Markov random fields and generalizes Brownian motion in two-dimensions. However, at present, there is a wide gap between the theory of Gaussian free field (including the subsequent theory of random fields) in statistical physics and modern probability, and the current practice of spatial statistics via lattice based Gaussian Markov random fields. Thus, there is great need to bridge this gap to develop a principled framework for statistics and inference of spatial models and to pursue novel computations that make such inferences feasible. This project will consider formulating appropriate functionals of the de Wijs process to construct useful random fields and novel matrix-free computations via conjugate gradient and other methods, and will focus on developing new areas of scientific applications. The proposed research will also shed new light on and allow deeper understanding of theoretical and computational issues discussed by many researchers in spatial statistics in the past decades. Novel matrix-free computations will provide further impetus to study parametric bootstrap methods and multi-scale modeling, and to construct a new class of non-Gaussian random fields. The project will contribute to obtaining enhanced scientific understanding in studies of environmental bioassays, arsenic contamination of groundwater and distributions of galaxies. Advances in the field of spatial statistics are important because new statistical methods can be applied to a wide range of scientific questions in fields such as astronomy, agriculture, biomedical imaging, computer vision, climate and environmental studies, epidemiology and geology. The de Wijs process is one fundamental spatial process that generalizes Brownian motion from time to space. Using the de Wijs process as a fundamental building block, this project will develop novel mathematics and derive fast, efficient and large-scale statistical computations so that various scientific questions can be answered in a practical way. This will lead to new developments for the analysis of continuum spatial data and spatial point patterns, and will allow us to obtain enhanced scientific understanding in studies of environmental bioassays, arsenic contamination of groundwater and distributions of galaxies. The statistics and the computations that will be developed in this project will also be particularly relevant for various research problems that arise in environmental or global change, and in health studies. Finally, this project will integrate research and educational activities through the development of new graduate and undergraduate courses and will also provide valuable training and learning opportunities for students at graduate and undergraduate levels.
德韦斯过程(在统计物理学中也称为高斯自由场)是一种基本的空间过程,它是作为基于晶格的高斯马尔可夫随机场的缩放极限而出现的,并且概括了二维布朗运动。然而,目前统计物理和现代概率中的高斯自由场理论(包括随后的随机场理论)与当前基于格的高斯马尔可夫随机场的空间统计实践之间存在很大差距。因此,非常需要弥合这一差距,以开发空间模型统计和推理的原则框架,并寻求使此类推理可行的新颖计算。 该项目将考虑制定适当的 de Wijs 过程函数,以通过共轭梯度和其他方法构建有用的随机场和新颖的无矩阵计算,并将重点开发新的科学应用领域。拟议的研究还将为过去几十年来许多空间统计研究人员讨论的理论和计算问题提供新的启示并加深理解。 新颖的无矩阵计算将为研究参数引导方法和多尺度建模以及构造一类新的非高斯随机场提供进一步的动力。 该项目将有助于加深对环境生物测定、地下水砷污染和星系分布研究的科学认识。空间统计领域的进步非常重要,因为新的统计方法可以应用于天文学、农业、生物医学成像、计算机视觉、气候和环境研究、流行病学和地质学等领域的广泛科学问题。德韦斯过程是一种基本的空间过程,它概括了从时间到空间的布朗运动。 该项目将使用 de Wijs 过程作为基本构建模块,开发新颖的数学并导出快速、高效和大规模的统计计算,以便以实用的方式回答各种科学问题。这将带来连续空间数据和空间点模式分析的新发展,并使我们能够在环境生物测定、地下水砷污染和星系分布研究中获得更深入的科学认识。 该项目中将开发的统计数据和计算也将与环境或全球变化以及健康研究中出现的各种研究问题特别相关。最后,该项目将通过开发新的研究生和本科生课程来整合研究和教育活动,并将为研究生和本科生提供宝贵的培训和学习机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debashis Mondal其他文献
Photocontrolled activation of doublyo-nitrobenzyl-protected small molecule benzimidazoles leads to cancer cell death
- DOI:
10.1039/d3sc01786a - 发表时间:
2023-07 - 期刊:
- 影响因子:8.4
- 作者:
Manzoor Ahmad;Naveen J. Roy;Anurag Singh;Debashis Mondal;Abhishek Mondal;Thangavel Vijayakanth;Mayurika Lahiri;Pinaki Talukdar - 通讯作者:
Pinaki Talukdar
Selective and rapid water transportation across a self-assembled peptide-diol channelviathe formation of a dual water array
- DOI:
10.1039/d2sc01737g - 发表时间:
2022-07 - 期刊:
- 影响因子:8.4
- 作者:
Debashis Mondal;Bhupendra R. Dandekar;Manzoor Ahmad;Abhishek Mondal;Jagannath Mondal;Pinaki Talukdar - 通讯作者:
Pinaki Talukdar
Exact Goodness‐of‐Fit Tests for Markov Chains
马尔可夫链的精确拟合优度检验
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Julian Besag;Debashis Mondal - 通讯作者:
Debashis Mondal
Hybrid Spin-Orbit Torque/Spin-Transfer Torque-Based Multibit Cell for Area-Efficient Magnetic Random Access Memory
用于区域高效磁随机存取存储器的混合自旋轨道扭矩/基于自旋转移扭矩的多位单元
- DOI:
10.1109/ted.2023.3325309 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:3.1
- 作者:
Debashis Mondal;Arun Singh;Shubham Bhatt;Rahul Mishra - 通讯作者:
Rahul Mishra
A highly efficient tandem [3 + 2] “click” cycloaddition/6-exo-cyclization strategy for the construction of triazole fused pyrazines
- DOI:
10.1039/c4ra12489h - 发表时间:
2014-10 - 期刊:
- 影响因子:3.9
- 作者:
Biswajit Roy;Debashis Mondal;Joydev Hatai;Subhajit Bandyopadhyay - 通讯作者:
Subhajit Bandyopadhyay
Debashis Mondal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debashis Mondal', 18)}}的其他基金
Markov Random Fields, Geostatistics and Matrix-Free Computation
马尔可夫随机场、地统计学和无矩阵计算
- 批准号:
2153669 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Distance-Based Analysis for Complex High-Dimensional Data
复杂高维数据的基于距离的分析
- 批准号:
2113771 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Distance-Based Analysis for Complex High-Dimensional Data
复杂高维数据的基于距离的分析
- 批准号:
2217007 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Markov Random Fields, Geostatistics and Matrix-Free Computation
马尔可夫随机场、地统计学和无矩阵计算
- 批准号:
1916448 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
2016 International Indian Statistical Association conference `Statistical and Data Sciences: A Key to Healthy People, Planet and Prosperity'
2016 年国际印度统计协会会议“统计和数据科学:人类健康、地球和繁荣的关键”
- 批准号:
1636648 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
- 批准号:
1519890 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Connecting Markov Random Fields with Geostatistical Models
连接马尔可夫随机场与地统计模型
- 批准号:
0906300 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
溶酶体膜蛋白LAMP2新突变Y228*促进心肌细胞糖代谢异常导致Danon病心肌病的机制研究
- 批准号:82360048
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于二元重编程的归一化肿瘤疫苗在局部晚期三阴乳腺癌新辅助治疗中的作用与机制研究
- 批准号:32371451
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
甜菊糖苷新位点糖基化的机制研究及其在低热量甜味剂结构创新中的应用
- 批准号:32372277
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
- 批准号:82373758
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
- 批准号:82371818
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FASEB SRC: Matricellular Proteins: Fundamental Concepts and New Directions
FASEB SRC:基质细胞蛋白:基本概念和新方向
- 批准号:
10468385 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
- 批准号:
1945452 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
- 批准号:
1945224 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant