A Fully Discrete Framework for the Adaptive Solution of Inverse Problems
逆问题自适应求解的完全离散框架
基本信息
- 批准号:1218454
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inverse problems like parameter estimation, data assimilation, optimalengineering design, and optimal control of large scale systems governed bypartial differential equations, are of considerable importance in manyfields including atmospheric science and oceanography, aerospaceengineering, and fluid and structural mechanics.State-of-the-art solvers for large scale partial differential equationsadaptively refine the time step and the mesh, and adjust the computationalpattern according to the features of the solution. Adaptivity is necessaryto control the numerical errors introduced by temporal and spatialdiscretizations and to preserve the qualitative features of the solution(e.g., avoid the formation of spurious wiggles). In contrast, most inverseproblems to date have been solved using non-adaptive methods (e.g., fixedgrids and timesteps).This project develops a fully discrete framework for solving inverseproblems in the context of adaptive models. The framework fills the gapbetween the state-of-the-art adaptive methods used in (forward)simulations and the computational tools currently available for thesolution of inverse problems. The specific research objectives are todevelop discrete algorithms for inverse problems with models that employrefinement of the spatial discretization, and adaptive time stepping, toguarantee that the discrete inversion process leads to convergentnumerical approximations, and to control the accuracy of the inversesolution.The results of this work are general algorithms and methodologies thatwill advance the field of inverse problems by developing the capability toadapt time steps, grid sizes, and computational patterns, such as tocontrol the quality and accuracy of the inverse solutions. These resultshave the potential to impact any maturefield which relies on adaptive simulations, such as data assimilation inatmospheric sciences, oceanography, and environmental sciences; optimalcontrol of flows, and optimal engineering design.The algorithmic and software tools developed during this research will belargely disseminated through specialized journals and conferences. Thisproject provides an excellent opportunity for training graduate students inthe areas of inverse problems and adaptive computations.
诸如参数估计,数据同化,最佳启动设计以及对大规模系统控制的副系统的最佳控制等逆问题在许多赛场中都非常重要解决方案。适应性是必要的,以控制由时间和水上性散布引入的数值误差,并保留溶液的定性特征(例如,避免形成虚假的摇摆)。相比之下,迄今为止,大多数逆势都使用非自适应方法(例如,固定格栅和时间段)来解决。该项目在自适应模型的背景下开发了一个完全离散的框架。该框架填充了(正向)模拟中使用的最新自适应方法与当前可用于反问题的解决方案之间的最新自适应方法。具体的研究目标是用于与模型的反问题的开发离散算法,这些算法的雇佣会导致空间离散化,并且自适应时间阶梯阶段,即离散反演过程可导致收敛性的近似值,并导致contressition the eversive the eversive the Argyoly corressive aologiese and Ondoologies and Ondoologies and Ondoologiese the Ofdermiss and Modecties to and and of gyolodies to and of gyolodies to and ofdyolices the and ofdyolices。 Toadapt时间步骤,网格大小和计算模式,例如逆向解决方案的质量和准确性。 这些结果可能会影响任何依赖于自适应模拟的天真田野,例如数据同化Inatmospheric科学,海洋学和环境科学;最佳流量和最佳工程设计。在这项研究中开发的算法和软件工具将通过专门的期刊和会议来暗中传播。 ThisProject为培训逆问题和适应性计算领域的研究生提供了绝佳的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Sandu其他文献
Eliminating Order Reduction on Linear, Time-Dependent ODEs with GARK Methods
使用 GARK 方法消除线性、瞬态 ODE 的降阶
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Steven Roberts;Adrian Sandu - 通讯作者:
Adrian Sandu
POD/DEIM Strategies for reduced data assimilation systems
减少数据同化系统的 POD/DEIM 策略
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. Stefanescu;Adrian Sandu;Ionel M. Navon - 通讯作者:
Ionel M. Navon
Alternating Directions Implicit Integration in a General Linear Method Framework
通用线性方法框架中的交替方向隐式积分
- DOI:
10.1016/j.cam.2019.112619 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Sarshar;Adrian Sandu - 通讯作者:
Adrian Sandu
Discrete adjoint variable method for the sensitivity analysis of ALI3-P formulations
ALI3-P 制剂敏感性分析的离散伴随变量法
- DOI:
10.1007/s11044-023-09911-x - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
Álvaro López Varela;C. Sandu;Adrian Sandu;Daniel Dopico Dopico - 通讯作者:
Daniel Dopico Dopico
Piecewise Polynomial Solutions of Aerosol Dynamic Equation
- DOI:
10.1080/02786820500543274 - 发表时间:
2006-04 - 期刊:
- 影响因子:5.2
- 作者:
Adrian Sandu - 通讯作者:
Adrian Sandu
Adrian Sandu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Sandu', 18)}}的其他基金
Transforming Reduced-Order Models of Fluids with Data Assimilation
通过数据同化转换流体降阶模型
- 批准号:
1953113 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CDS&E: Space-Time Parallel Algorithms for Solving PDE-Constrained Optimization Problems
CDS
- 批准号:
1709727 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
AF: Small: General Linear Multimethods for the Time Integration of Multiscale Multiphysics Problems
AF:小:多尺度多物理问题时间积分的通用线性多方法
- 批准号:
1613905 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Construction, Analysis, Implementation and Application of New Efficient Exponential Integrators
合作研究:新型高效指数积分器的构建、分析、实现和应用
- 批准号:
1419003 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: A multiscale unified simulation environment for geoscientific applications
协作研究:地球科学应用的多尺度统一模拟环境
- 批准号:
0904397 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: A Computational Framework for Assessing the Observation Impact in Air Quality Forecasting
合作研究:评估空气质量预测观测影响的计算框架
- 批准号:
0915047 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF:Small: General Linear Time-stepping Methods for Large-Scale Simulations
CIF:Small:用于大规模仿真的通用线性时间步进方法
- 批准号:
0916493 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Solution of Inverse Problems with Adaptive Models
自适应模型反问题的求解
- 批准号:
0635194 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Multirate Time Integration Algorithms for Adaptive Simulations of PDEs
用于偏微分方程自适应模拟的多速率时间积分算法
- 批准号:
0515170 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Development of Computational Methods for the New Generation of Air Quality Models
职业:新一代空气质量模型计算方法的开发
- 批准号:
0413872 - 财政年份:2003
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
时间Petri网框架下具有时序规范的赋时离散事件系统安全监控研究
- 批准号:62303359
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
加标Petri网框架下的网络化离散事件系统临界可观性验证与强化控制
- 批准号:62303375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机布朗离散系统的故障重构和容错控制:描述系统框架
- 批准号:61673074
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
基于GPU的离散模拟统一计算软件框架研究
- 批准号:11272312
- 批准年份:2012
- 资助金额:78.0 万元
- 项目类别:面上项目
基于离散单元法的钢筋混凝土框架结构强震倒塌过程仿真
- 批准号:51178279
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Theory and Modeling of Functional Conformational Changes of RNA Polymerases
RNA聚合酶功能构象变化的理论和建模
- 批准号:
10656962 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Safe, Privacy-Aware, and Resource-Efficient Control Framework for Cyber-Physical Systems
安全、隐私意识和资源高效的网络物理系统控制框架
- 批准号:
22KK0155 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Robust framework for cluster analysis of multivariate discrete data
多元离散数据聚类分析的稳健框架
- 批准号:
573564-2022 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
University Undergraduate Student Research Awards
International collaboration to establish new framework of soil mechanics enhanced by granular mechanics
国际合作建立颗粒力学增强的土力学新框架
- 批准号:
21KK0071 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Statistical methods for higher order dependences to understand protein functions
用于了解蛋白质功能的高阶依赖性统计方法
- 批准号:
10492723 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别: