Collaborative Research: A Computational Framework for Assessing the Observation Impact in Air Quality Forecasting
合作研究:评估空气质量预测观测影响的计算框架
基本信息
- 批准号:0915047
- 负责人:
- 金额:$ 41.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This research develops the algorithmic and computational framework needed for a judicious assessment of the observation impact in air quality modeling. Novel algorithms in the framework of model-constrained optimization will allow to account for the data location in the time-space domain, observation type, instrument type, and data interaction in the presence of multiple observing systems. Specifically, the research is focused on: development of high-order adjoint-based observation impact techniques consistent to four-dimensional variational data assimilation schemes; assessment of forecast sensitivity to observation error variances and estimation of the forecast impact of uncertainties in the specification of the input error statistics; development of efficient computational approaches to allow for practical implementations of the observation impact algorithms; validation of the novel techniques through observing system experiments and assessment of the potential impact of new observing systems.The ability to accurately represent the distribution of atmospheric pollutants in relation to various anthropogenic activities is essential for chemical weather forecasting to protect the population, for answering science questions related to the future of our planet, and for designing sound environmental policies. An accurate representation of the chemical composition of the atmosphere requires a close integration of models and observations through data assimilation.Data assimilation is the process by which model predictions utilize measurements to produce an optimal representation of the state of the atmosphere. As more observations are becoming available and new measurement networks are being planned, it is of critical importance to develop the capabilities to best utilize the data, to better manage the sensing resources, and to design more effective field experiments and networks to support atmospheric chemistry and air quality studies. This research develops the computational tools required to optimize the information provided by the existing observing systems and to provide guidance for future improvements to the observational network and instruments design. The new developments will also help the design process of new field experiments and of new chemical monitoring networks.
该奖项是根据2009年的《美国回收与再投资法》(公法111-5)资助的。这项研究开发了对空气质量建模中观察影响的明智评估所需的算法和计算框架。模型受限优化框架中的新算法将允许在存在多个观测系统的情况下,在时间空间域,观察类型,仪器类型和数据相互作用中考虑数据位置。具体而言,研究的重点是:基于高阶的观察影响技术的开发与四维变分数据同化方案一致;评估对观察误差方差的预测敏感性以及对输入误差统计规范中不确定性的预测影响的估计;开发有效的计算方法,以实现观察影响算法的实际实施;通过观察系统实验和评估新观测系统的潜在影响来验证新技术。准确表示与各种人为活动有关的大气污染物的分布的能力对于化学天气预测以保护人群,对于保护与我们的星球的未来以及设计环境环境策略有关的化学天气预测至关重要。大气化学成分的准确表示需要通过数据同化的模型和观察的密切整合。数据同化是模型预测利用测量来产生大气状态的最佳表示的过程。随着越来越多的观察结果并计划了新的测量网络,开发能力以最好地利用数据,更好地管理感应资源,并设计更有效的现场实验和网络以支持大气化学和空气质量研究至关重要。本研究开发了优化现有观测系统提供的信息所需的计算工具,并为观察网络和工具设计的未来改进提供指导。新的发展还将帮助新的现场实验和新化学监测网络的设计过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Sandu其他文献
Eliminating Order Reduction on Linear, Time-Dependent ODEs with GARK Methods
使用 GARK 方法消除线性、瞬态 ODE 的降阶
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Steven Roberts;Adrian Sandu - 通讯作者:
Adrian Sandu
POD/DEIM Strategies for reduced data assimilation systems
减少数据同化系统的 POD/DEIM 策略
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. Stefanescu;Adrian Sandu;Ionel M. Navon - 通讯作者:
Ionel M. Navon
Alternating Directions Implicit Integration in a General Linear Method Framework
通用线性方法框架中的交替方向隐式积分
- DOI:
10.1016/j.cam.2019.112619 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Sarshar;Adrian Sandu - 通讯作者:
Adrian Sandu
Discrete adjoint variable method for the sensitivity analysis of ALI3-P formulations
ALI3-P 制剂敏感性分析的离散伴随变量法
- DOI:
10.1007/s11044-023-09911-x - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
Álvaro López Varela;C. Sandu;Adrian Sandu;Daniel Dopico Dopico - 通讯作者:
Daniel Dopico Dopico
Piecewise Polynomial Solutions of Aerosol Dynamic Equation
- DOI:
10.1080/02786820500543274 - 发表时间:
2006-04 - 期刊:
- 影响因子:5.2
- 作者:
Adrian Sandu - 通讯作者:
Adrian Sandu
Adrian Sandu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Sandu', 18)}}的其他基金
Transforming Reduced-Order Models of Fluids with Data Assimilation
通过数据同化转换流体降阶模型
- 批准号:
1953113 - 财政年份:2020
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
CDS&E: Space-Time Parallel Algorithms for Solving PDE-Constrained Optimization Problems
CDS
- 批准号:
1709727 - 财政年份:2017
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
AF: Small: General Linear Multimethods for the Time Integration of Multiscale Multiphysics Problems
AF:小:多尺度多物理问题时间积分的通用线性多方法
- 批准号:
1613905 - 财政年份:2016
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Collaborative Research: Construction, Analysis, Implementation and Application of New Efficient Exponential Integrators
合作研究:新型高效指数积分器的构建、分析、实现和应用
- 批准号:
1419003 - 财政年份:2014
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
A Fully Discrete Framework for the Adaptive Solution of Inverse Problems
逆问题自适应求解的完全离散框架
- 批准号:
1218454 - 财政年份:2012
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Collaborative Research: A multiscale unified simulation environment for geoscientific applications
协作研究:地球科学应用的多尺度统一模拟环境
- 批准号:
0904397 - 财政年份:2009
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
CIF:Small: General Linear Time-stepping Methods for Large-Scale Simulations
CIF:Small:用于大规模仿真的通用线性时间步进方法
- 批准号:
0916493 - 财政年份:2009
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Solution of Inverse Problems with Adaptive Models
自适应模型反问题的求解
- 批准号:
0635194 - 财政年份:2006
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Multirate Time Integration Algorithms for Adaptive Simulations of PDEs
用于偏微分方程自适应模拟的多速率时间积分算法
- 批准号:
0515170 - 财政年份:2005
- 资助金额:
$ 41.86万 - 项目类别:
Continuing Grant
CAREER: Development of Computational Methods for the New Generation of Air Quality Models
职业:新一代空气质量模型计算方法的开发
- 批准号:
0413872 - 财政年份:2003
- 资助金额:
$ 41.86万 - 项目类别:
Continuing Grant
相似国自然基金
面向实时视频分析的端云协作无服务器计算资源管理方法研究
- 批准号:62302292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向边缘智能的无线网络协作计算与资源优化研究
- 批准号:62301307
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机异构群智计算资源建模与协作方法研究
- 批准号:62372381
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向群智计算的多方协作激励和多层次资源协同关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向群智计算的多方协作激励和多层次资源协同关键技术研究
- 批准号:62202512
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319896 - 财政年份:2024
- 资助金额:
$ 41.86万 - 项目类别:
Standard Grant