SHF: Small: Pipelined and wireless ultra-low power straintronics: An acoustically clocked combinational and sequential nanomagnetic architecture

SHF:小型:管道式和无线超低功耗应变电子学:声学时钟组合和顺序纳米磁性架构

基本信息

  • 批准号:
    1216614
  • 负责人:
  • 金额:
    $ 44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

Elliptical single-domain nanomagnets with two stable magnetization orientations are far more energy-efficient as logic switches than traditional transistors. However, the method employed to switch them must be energy-efficient as well in order to build ultra-low-power nanomagnetic logic and memory paradigms. It has been theoretically shown that using multiferroic (magnetostrictive-piezoelectric) nanomagnets, whose magnetization can be flipped with strain generated by a tiny electrostatic potential applied across the piezoelectric layer, results in a remarkably energy-efficient switching scheme. It reduces the dissipation in the switching/clocking circuit by four orders of magnitude at a clock rate of ~ 1 GHz compared to other nanomagnet switching schemes. While this is attractive, an unattractive trait of nanomagnetic logic chains is that in order to build a pipelined architecture and hence retain an acceptable bit transfer rate, each magnet must be clocked individually. This necessitates contacting each magnetic with a contact line, which imposes a Herculean lithographic burden. The PIs propose to overcome this problem completely by designing and fabricating a novel acoustic scheme for clocking that allows pipelining and at the same time does not require contacts to every magnet, thereby completely lifting the lithography burden. A surface acoustic wave (SAW) launched in the substrate, and slowed down with periodically placed masses, generates strain in an array of magnets in the correct sequence for bit transfer, as long as the spacing between the magnets is one quarter of the SAW?s wavelength. With this scheme, the energy dissipation in a gate operation at room temperature can be very low. This project will: (i) design combinational and sequential logic based on acoustically clocked magnetostrictive nanomagnets acting as logic switches, as well as perform extensive simulations using the stochastic Landau-Lifshitz-Gilbert (LLG) equation to understand and optimize reliability and fault tolerance in the presence of thermal noise; (ii) experimentally demonstrate pipelined unidirectional logic flow, and (iii) develop comprehensive coupled models for the switching dynamics of nanomagnets stressed by surface acoustic wave (SAW). This research will result in a novel computational paradigm whose astonishing energy efficiency combined with very little lithographic burden could enable the production of cheap, high yield and extremely low power processors. Such processors would consume so little energy that they can be run off the energy harvested from the environment. This could open up hitherto unimaginable applications such as medically implanted processors powered only by the motion of the patient's body, or processors that monitor the structural health of bridges and buildings while being powered by vibrations caused by wind or traffic. Integration of this research with education and mentoring will result in traditional training activities such as guiding two doctoral students who will gain multidisciplinary skills in advanced nanofabrication, nanocharacterization and modeling, as well as undergraduate projects on SAW devices and nanofabrication of magnetostrictive nanomagnets that will be mentored by the PI and co-PI?s doctoral students. Other innovative outreach programs will include holding workshops on nanomagnets and computing for high school students through the Math Science Innovation Center (MSIC) and incorporating diversity into outreach programs by hosting under-represented K-12 students in summer with the help of VCUs Richmond Area Program for Minorities in Engineering (RAPME) program. These students will perform nanolithography under supervision and study the magnetic structures they create with MFM.
具有两个稳定磁化方向的椭圆形单域纳米磁体比传统晶体管更节能地作为逻辑开关。但是,为了构建超低功率纳米磁性逻辑和内存范式,用于切换它们的方法也必须具有节能。从理论上讲,使用多丝质(磁刻曲 - 螺旋电离)纳米磁体,其磁化强度可以用由在压电层上施加的微小静电电势产生的应变来翻转,从而导致了一种伟大的能量效率开关方案。与其他纳米磁性开关方案相比,它将开关/时钟电路中的耗散降低了四个数量级。尽管这很有吸引力,但纳米磁逻辑链的一个没有吸引力的特征是,为了构建管道架构,因此保留了可接受的位传输速率,必须单独计时每个磁铁。这需要与接触线接触每个磁性,这施加了巨大的光刻负担。 PI提议通过设计和制造新型的声学方案来完全克服这个问题,该方案可以进行管道,同时不需要与每个磁铁接触,从而完全增加了光刻负担。 在底物中发射的表面声波(SAW),并用定期放置的质量放慢速度,在正确的序列中以磁体的阵列产生应变以进行位传递,只要磁体之间的间距是SAW波长的四分之一。使用此方案,在室温下,栅极操作中的能量耗散可能非常低。该项目将:(i)基于声学时钟的磁性磁性纳米磁体设计组合和顺序逻辑,用作逻辑开关,并使用随机Landau-lifshitz-gilbert(LLG)方程进行广泛的模拟,以理解和优化在存在热噪声的情况下的可靠性和容忍度; (ii)实验证明了管道的单向逻辑流,(iii)为表面声波强调的纳米磁体的开关动力学开发了全面的耦合模型(SAW)。这项研究将导致一种新颖的计算范式,其惊人的能源效率与很少的光刻负担相结合,可以使廉价,高收益和极低的电源处理器产生。这样的处理器消耗的能量很少,以至于它们可以从环境中收获的能量中跑出。这可能打开迄今无法想象的应用,例如仅由患者身体运动提供动力的医学植入处理器,或者是监控桥梁和建筑物结构健康的同时由风或交通引起的振动供电的处理器。将这项研究与教育和指导的整合将导致传统的培训活动,例如指导两个博士生,他们将获得高级纳米纳米化,纳米含量和建模的多学科技能,以及在锯子上的本科项目和纳米纳米纳米型纳米纳米人的纳米纳米纳米人的纳米纳米纳米纳米人的纳米纳米纳米人。其他创新的外展计划将包括通过数学科学创新中心(MSIC)举办有关纳米磁铁的研讨会和高中生的计算,并在夏季在VCUS Richmond Area in Engineering(Rapme)计划的VCUS Richmond Area计划的帮助下,通过在夏季举办代表性不足的K-12学生,将多样性纳入外展计划。这些学生将在监督下进行纳米光刻,并研究他们使用MFM创建的磁性结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayasimha Atulasimha其他文献

Jayasimha Atulasimha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayasimha Atulasimha', 18)}}的其他基金

ExpandQISE: Track 1: Energy Efficient Quantum Control of Robust Spin Ensemble Qubits (EQ2)
ExpandQISE:轨道 1:鲁棒自旋系综量子位的节能量子控制 (EQ2)
  • 批准号:
    2231356
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152601
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Magneto Optic Kerr Effect (MOKE) Microscope for Research and Teaching
MRI:购买磁光克尔效应 (MOKE) 显微镜用于研究和教学
  • 批准号:
    2117646
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Efficient Voltage Controlled Non-volatile Domain Wall Devices for Neural Networks
合作研究:用于神经网络的节能压控非易失性畴壁器件
  • 批准号:
    1954589
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Skyrmion Mediated Eenergy-efficient VCMA Switching of 2-Terminal p-MTJ Memory
SHF:小型:合作研究:Skyrmion 介导的 2 端 p-MTJ 存储器的节能 VCMA 切换
  • 批准号:
    1909030
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Energy Efficient Strain Assisted Spin Transfer Torque Memory
SHF:小型:合作研究:节能应变辅助自旋转移扭矩存储器
  • 批准号:
    1815033
  • 财政年份:
    2018
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
CAREER: Reliable and Fault Tolerant Super Energy Efficient Nanomagnetic Computing in the Presence of Thermal Noise
职业:存在热噪声时可靠且容错的超能效纳米磁计算
  • 批准号:
    1253370
  • 财政年份:
    2013
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Ultra-Low Power and Ultra-Sensitive Spintronic Nanowire Strain Sensor
超低功耗、超灵敏自旋电子纳米线应变传感器
  • 批准号:
    1301013
  • 财政年份:
    2013
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant

相似国自然基金

用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
应用新型小波-同伦方法求解方腔及微管道内的混合对流问题
  • 批准号:
    11872241
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于超声导波声弹特性的非介入式小管径管道压力检测方法与机理研究
  • 批准号:
    11662013
  • 批准年份:
    2016
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
基于提升多小波的有限元理论及其在管道裂纹诊断中的应用
  • 批准号:
    51075314
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
考虑土体小应变刚度特征时隧道开挖与周边地下设施相互作用的研究
  • 批准号:
    50808109
  • 批准年份:
    2008
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

微小管ダイナミクスに着目した食道癌の新規治療法開発
开发关注微管动力学的食管癌新治疗方法
  • 批准号:
    22K08848
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
小児麻酔の気道確保時における危機的合併症と関連するリスク因子に関する研究
小儿麻醉气道管理中重大并发症的危险因素研究
  • 批准号:
    22K09085
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
小児外科領域の革新的極細径内視鏡シリーズの開発と応用
创新型小儿外科超薄内窥镜系列的开发与应用
  • 批准号:
    21K12749
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of Optimal Route Control System for Small Unmanned Aircraft Movement using Smart Meter Wireless Devices
利用智能仪表无线设备建立小型无人机运动最优航路控制系统
  • 批准号:
    21K11875
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of novel embryonic stem cell-based cartilage for pediatric airway stenosis
开发新型胚胎干细胞软骨治疗小儿气道狭窄
  • 批准号:
    19H03720
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了