III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data

III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联

基本信息

  • 批准号:
    1162374
  • 负责人:
  • 金额:
    $ 49.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-10-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

A fundamental challenge in life sciences is the characterization of genetic factors that underlie phenotypic differences. Thanks to the advanced sequencing technologies, an enormous amount of genetic variants have been identified and cataloged. Such data hold great potential to understand how genes affect phenotypes and contribute to the susceptibility to environmental stimulus. However, the existing computational methods for analyzing and interpreting the high-throughput genetic data are still in their infancy. The objective of this project is to systematically investigate the computational and statistical principles in modeling and discovering genetic basis of complex phenotypes. The proposed research provides answers to the following fundamental questions in genetic association study: (1) How to effectively and efficiently assess statistical significance of the findings? (2) How to account for the relatedness between samples in genetic association study? (3) How to accurately capture possible interactions between multiple genetic factors and their joint contribution to phenotypic variation? In particular, the team will develop a multi-layer indexing structure for robust and scalable multiple testing correction, a general phylogenetic tree based framework to account for local population structure, and an ensemble learning approach for studying joint effect of multiple genetic factors.The research provides a computational framework for large scale genotype-phenotype association study. The outcome includes novel methods for addressing sample relatedness, capturing confounding factors, and controlling multiple testing errors which are widely applicable for many common data mining tasks including frequent pattern mining, multitask learning, and ensemble learning among others. Collectively, the theoretic framework and algorithms will provide the research community much better tools to dissect complex relationships between genotypes and phenotypes, and gain deeper understanding of the roles of environmental stimuli.The proposed research directly involves applications in large scale genome-wide association study. Additional applications exist for biologists in their study of gene-gene interactions, metabolic pathways and protein-protein interaction networks. Beyond the applications proposed here, the algorithms can find wide applications in other areas of biology as well as other scientific disciplines. The methods will be evaluated thoroughly by both simulation and real data collected from yeast, mouse, and human. Early versions of the applications will be made available to the biological community through a web-based server to evaluate efficacy of the methods and to apply them to a broader set of problems. The research findings and methods will be integrated into graduate and undergraduate instruction. The team already offer classes in computational biology and data-mining where the proposed tools will aid students in comprehending abstract concepts and data relations. They will also continue their commitment to supporting multidisciplinary educational experiences, and service to the research community, as well and proving research opportunities for undergraduate students.
生命科学的一个基本挑战是表征表型差异背后的遗传因素。得益于先进的测序技术,大量的遗传变异已被识别并编目。这些数据对于了解基因如何影响表型以及如何影响对环境刺激的敏感性具有巨大的潜力。然而,现有的用于分析和解释高通量遗传数据的计算方法仍处于起步阶段。该项目的目标是系统地研究建模和发现复杂表型的遗传基础的计算和统计原理。本研究为遗传关联研究中的以下基本问题提供了答案:(1)如何有效且高效地评估研究结果的统计显着性? (2)遗传关联研究中如何解释样本之间的相关性? (3)如何准确捕获多个遗传因素之间可能存在的相互作用及其对表型变异的共同贡献?特别是,该团队将开发一种用于稳健且可扩展的多重测试校正的多层索引结构,一种用于考虑当地种群结构的基于通用系统发育树的框架,以及一种用于研究多种遗传因素的联合效应的集成学习方法。为大规模基因型-表型关联研究提供了计算框架。结果包括解决样本相关性、捕获混杂因素和控制多个测试错误的新方法,这些方法广泛适用于许多常见的数据挖掘任务,包括频繁模式挖掘、多任务学习和集成学习等。总的来说,理论框架和算法将为研究界提供更好的工具来剖析基因型和表型之间的复杂关系,并更深入地了解环境刺激的作用。所提出的研究直接涉及大规模全基因组关联研究的应用。生物学家在基因-基因相互作用、代谢途径和蛋白质-蛋白质相互作用网络的研究中还存在其他应用。除了这里提出的应用之外,这些算法还可以在生物学的其他领域以及其他科学学科中找到广泛的应用。这些方法将通过模拟和从酵母、小鼠和人类收集的真实数据进行彻底评估。该应用程序的早期版本将通过基于网络的服务器提供给生物界,以评估这些方法的功效并将其应用于更广泛的问题。 研究结果和方法将融入研究生和本科生的教学中。该团队已经提供了计算生物学和数据挖掘课程,其中提出的工具将帮助学生理解抽象概念和数据关系。他们还将继续致力于支持多学科教育体验、为研究界提供服务,并为本科生提供研究机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Zhang其他文献

Mechanism for covalence bond benzene dimers formation: A DFT and MP2 investigation
共价键苯二聚体形成机制:DFT 和 MP2 研究
  • DOI:
    10.1016/j.cplett.2014.07.030
  • 发表时间:
    2014-08-28
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Yuanyuan Qin;R. Huo;Xiang Zhang
  • 通讯作者:
    Xiang Zhang
Frustratingly Easy Knowledge Distillation via Attentive Similarity Matching
通过细心的相似性匹配轻松地提取知识
Finding and Extracting Academic Information from Conference Web Pages
从会议网页查找和提取学术信息
  • DOI:
    10.1007/978-3-642-41629-3_6
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng Wang;Xiang Zhang;F. Zhou
  • 通讯作者:
    F. Zhou
Treatment and prognosis of cervical cancer associated with pregnancy: analysis of 20 cases from a Chinese tumor institution
妊娠相关宫颈癌的治疗及预后:中国某肿瘤机构20例分析
Boosting off-chip interconnects through chip-to-chip capacitive coupled communication
通过芯片间电容耦合通信增强片外互连

Xiang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Zhang', 18)}}的其他基金

CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CRII:SCH:Self-Supervised Contrastive Representation Learning for Medical Time Series
CRII:SCH:医学时间序列的自监督对比表示学习
  • 批准号:
    2245894
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
  • 批准号:
    2114822
  • 财政年份:
    2021
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Low-Vibration, Cryogen-Free Cryostat Microscope System
MRI:获取低振动、无冷冻剂的低温恒温器显微镜系统
  • 批准号:
    1725335
  • 财政年份:
    2017
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
EAGER: Advancing High-Efficiency Nanoscale Antiferromagnetic Spintronics with Two-Dimensional Half Metals
EAGER:利用二维半金属推进高效纳米级反铁磁自旋电子学
  • 批准号:
    1753380
  • 财政年份:
    2017
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
  • 批准号:
    1664629
  • 财政年份:
    2016
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
  • 批准号:
    1552915
  • 财政年份:
    2016
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
  • 批准号:
    1707548
  • 财政年份:
    2016
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
INSPIRE Track 1: Exploring New Route of Optically Mediated Self-Assembly: Final Material Properties Determine Its Structures
INSPIRE 轨道 1:探索光介导自组装的新途径:最终材料特性决定其结构
  • 批准号:
    1344290
  • 财政年份:
    2013
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
Materials World Network: Classical and Quantum Optical Metamaterials by Combining Top-down and Bottom-up Fabrication Techniques
材料世界网络:结合自上而下和自下而上制造技术的经典和量子光学超材料
  • 批准号:
    1210170
  • 财政年份:
    2012
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310114
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2402311
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310260
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了