Profiling singularities of geometric PDE
分析几何偏微分方程的奇点
基本信息
- 批准号:1205270
- 负责人:
- 金额:$ 16.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with nonlinear parabolic partial differential equations (PDE) and systems satisfied by geometric objects evolving by geometrically natural quantities such as curvature. These PDE are used in programs to evolve given geometries toward ones which are in suitable senses "optimal" or "canonical," and which are thus amenable to classification. But because these PDE generically develop singularities, a classification of those singular behaviors is necessary for the successful completion of those programs. Analyzing formation of (finite- or infinite-time) singularities is the unifying goal of this project. A key approach is the use of matched asymptotics, a technique that can provide the most precise description of the set of points on which a solution becomes singular, and of the behavior of the solution in a space-time neighborhood of that singularity. Major objectives of this proposal include: (1) removing symmetry hypotheses in asymptotic singularity analysis for mean curvature flow (MCF) and Ricci flow (RF), thereby proving that certain singularity profiles are "universal" in a rigorous sense; (2) constructing and analyzing (non-generic) Type-II RF singularities, which form more slowly than the natural parabolic rate and thus feature faster curvature blow-up; (3) constructing codimension-2 RF singularities and studying their asymptotics, genericity, and stability; (4) constructing and studying new examples of RF local singularity formation for complex surfaces (and complex manifolds of higher dimension) with applications to the classification of singularity models in those dimensions; (5) studying stability (properly understood) of product structures and related curvature conditions preserved by RF in low dimensions; (6) showing that singular profiles of geometric PDE depend continuously on their initial data, with applications to topology; and (7) studying formation and stability of infinite-time RF singularity models under distinct convergence schemes designed to provide asymptotics at temporal infinity, along with other geometric information.The theory of geometric partial differential equations (PDE) has surprising similarities with nonlinear hyperbolic and dispersive equations. Furthermore, the PDE that arise in curvature flows are remarkably similar to equations that model heat propagation, the movement of oil in shale and thin films, combustion in porous media, and certain effects in plasma physics. In all of these applications, the underlying models are fundamentally nonlinear, a property which causes the associated PDE to develop various critical or singular behaviors. The utility of these models requires a precise mathematical understanding of these behaviors. This project will further develop mathematical techniques, particularly matched asymptotic expansions, that should help the analysis of singularity formation in these varied systems and applications.
该项目与非线性抛物线偏微分方程(PDE)有关,以及通过诸如曲率等几何自然量演变而成的几何对象所满足的系统。这些PDE用于在程序中进化给给定的几何形状,以适当的感觉“最佳”或“规范”,因此可以对分类进行分类。但是,由于这些PDE通常会发展出奇异性,因此对这些程序的成功完成是必要的。分析(有限或无限)奇点的形成是该项目的统一目标。一种关键方法是使用匹配的渐近学,该技术可以提供最精确的描述,以对解决方案变为奇异点,以及在该奇异性的时空社区中解决方案的行为。该提案的主要目标包括:(1)在平均曲率流(MCF)和RICCI流(RF)的渐近奇异性分析中删除对称性假设,从而证明某些奇异性曲线在严格的意义上是“通用的”; (2)构建和分析(非生成)II型RF奇点,其形成比自然抛物线速率慢,从而具有更快的曲率爆炸; (3)构建Codimension-2 RF奇点并研究其渐近学,通用性和稳定性; (4)构建和研究RF局部奇异性形成的新示例,以在这些维度中的奇异模型分类中应用复杂的表面(以及更高维度的复杂歧管); (5)研究RF在低维度保留的产品结构和相关曲率条件的稳定性(正确理解); (6)表明几何PDE的奇异曲线不断取决于其初始数据,并应用于拓扑; (7)研究无限时间RF奇异模型在不同的收敛方案下的形成和稳定性,旨在在时间无穷大的情况下提供渐近性的渐近性,以及其他几何信息。几何部分偏微分方程(PDE)的理论令人惊讶地与非线性超高和分散方程式相似。此外,曲率流中产生的PDE与模拟热传播的方程式,页岩和薄膜中的油的运动,多孔介质中的燃烧以及血浆物理学的某些影响非常相似。在所有这些应用中,基本模型从根本上是非线性的,该属性会导致相关PDE发展各种关键或奇异行为。 这些模型的实用性需要对这些行为有精确的数学理解。该项目将进一步开发数学技术,尤其是相匹配的渐近扩展,这将有助于分析这些各种系统和应用中的奇异性形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Knopf其他文献
POSITIVITY OF RICCI CURVATURE UNDER THE KÄHLER–RICCI FLOW
- DOI:
10.1142/s0219199706002052 - 发表时间:
2005-01 - 期刊:
- 影响因子:1.6
- 作者:
Dan Knopf - 通讯作者:
Dan Knopf
Neckpinching for asymmetric surfaces moving by mean curvature
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dan Knopf - 通讯作者:
Dan Knopf
Hyperbolic geometry and 3-manifolds
双曲几何和 3 流形
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
B. Chow;Sun;David Glickenstein;Christine Guenther;J. Isenberg;Tom Ivey;Dan Knopf;P. Lu;Feng Luo;Lei Ni - 通讯作者:
Lei Ni
Ricci flow neckpinches without rotational symmetry
无旋转对称性的 Ricci 流颈缩
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Isenberg;Dan Knopf;N. Šešum - 通讯作者:
N. Šešum
A lower bound for the diameter of solutions to the Ricci flow with nonzero $H^{1}(M^{n};mathbb{R})$
非零 Ricci 流解的直径下界 $H^{1}(M^{n};mathbb{R})$
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
T. Ilmanen;Dan Knopf - 通讯作者:
Dan Knopf
Dan Knopf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Knopf', 18)}}的其他基金
CAREER: Investigating Ricci flow singularity formation
职业:研究里奇流奇点的形成
- 批准号:
0545984 - 财政年份:2006
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Behavior of the Ricci Flow and Related Curature Flows
Ricci 流和相关 Curature 流的行为
- 批准号:
0511184 - 财政年份:2004
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Behavior of the Ricci Flow and Related Curature Flows
Ricci 流和相关 Curature 流的行为
- 批准号:
0328233 - 财政年份:2002
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Behavior of the Ricci Flow and Related Curature Flows
Ricci 流和相关 Curature 流的行为
- 批准号:
0202796 - 财政年份:2002
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
相似国自然基金
偏振莫比乌斯带奇异性与康普顿散射的光电耦合动力学
- 批准号:12332002
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
非定常奇异摄动问题的各向异性时空自适应有限元方法
- 批准号:12301467
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具奇异性偏微分方程谱元法和间断谱元法的误差估计
- 批准号:12271128
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
考虑剪切荷载及变形局部化时灾变破坏的幂律奇异性前兆及灾变预测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
- 批准号:
22KF0073 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
- 批准号:
2304684 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2022
- 资助金额:
$ 16.07万 - 项目类别:
Discovery Grants Program - Individual
Analysis on singularities of higher order geometric gradient flows
高阶几何梯度流的奇点分析
- 批准号:
21H00990 - 财政年份:2021
- 资助金额:
$ 16.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2021
- 资助金额:
$ 16.07万 - 项目类别:
Discovery Grants Program - Individual