CAREER: Probabilistic Methods for Addressing Complexity and Constraints in Protein Systems
职业:解决蛋白质系统复杂性和约束的概率方法
基本信息
- 批准号:1144106
- 负责人:
- 金额:$ 54.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed activity involves a research environment and educational curriculum dedicated to dealing efficiently with the complexity and constraints that protein molecules pose to computational studies. The emphasis is on elucidating the motions that proteins employ for biological function. This is a fundamental issue in the understanding of proteins and biology due to the central role of proteins in cellular processes.The research addresses fundamental issues in protein modeling. Understanding proteins in silico involves searching a vast high-dimensional conformational space of inherently flexible systems with numerous inter-related degrees of freedom, complex geometry, physical constraints, and continuous motion. Three core research directions are identified. (1) Geometric constraints underlying protein motion are not trivial to identify or address. The proposed research exploits mechanistic analogies between proteins and robot kinematic linkages and investigates inverse kinematics techniques to efficiently formulate and address complex geometric constraints arising in diverse protein studies. (2) The funnel-like protein energy landscape exposes physics-based energetic constraints that are often demanding to address in silico. The proposed research pursues a multiscale treatment of energetic constraints in the context of probabilistic search, supporting coarse- and fine-grained levels of protein representational detail and converting between them with information gathered during exploration. (3) The conformational ensemble view of the protein state relevant for function necessitates search algorithms capable of exploring the high-dimensional conformational space and its rugged energy landscape. A novel probabilistic search framework is proposed that gathers information about the space it explores and employs this information to advance towards promising unexplored regions of the space. Taken together, these research directions allow addressing complexity in proteins by formulating and exploiting geometric and energetic constraints, thus narrowing the search space of interest to regions where the constraints are satisfied, and by employing a novel probabilistic framework with enhanced sampling capability able to feasibly search the relevant regions of the space.The proposed activity promises to advance discovery and understanding both in the computer science and protein biophysics communities. Since most problems of practical interest are high-dimensional and often exhibit complex non-linear spaces, the proposed research cuts across and spans multiple areas in computer science, such as robot motion planning, optimization in complex non-linear spaces, and modeling and simulation of complex physics-based systems. In particular, the research will reveal effective probabilistic search strategies for continuous high-dimensional search spaces. Analogies with articulated mechanisms will offer insight on how to generate valid robot configurations in the presence of constraints. On the biophysical side, the research promises to advance protein modeling and understanding across diverse applications. The proposed activity involves interdisciplinary collaborations with computer scientists, biophysicists, and chemists. Findings and data will be disseminated broadly to enhance scientific understanding across diverse communities. Specific educational objectives focusing on curriculum design and outreach activities are formulated to employ the proposed research for broadening the participation of college and pre-college students, with a particular emphasis on underrepresented groups.
提出的活动涉及研究环境和教育课程,该课程致力于有效处理蛋白质分子对计算研究的复杂性和约束。重点是阐明蛋白质用于生物学功能的运动。由于蛋白质在细胞过程中的核心作用,这是理解蛋白质和生物学的一个基本问题。该研究解决了蛋白质建模的基本问题。了解硅中的蛋白质涉及搜索固有柔性系统的巨大高维构象空间,该系统具有许多相关的自由度,复杂的几何学,物理约束和连续运动。确定了三个核心研究方向。 (1)蛋白质运动的几何约束并不是微不足道的。拟议的研究利用了蛋白质与机器人运动学联系之间的机械类比,并研究了反向运动学技术,以有效地制定和解决各种蛋白质研究中产生的复杂几何约束。 (2)类似漏斗的蛋白质能量景观暴露了基于物理的能量约束,这些约束通常要求在计算机中解决。拟议的研究在概率搜索的背景下追求对能量约束的多尺度处理,支持蛋白质代表性细节的粗糙和细粒度水平,并通过在探索过程中收集的信息进行转化。 (3)蛋白质状态与功能相关的蛋白质状态的构象合奏视图需要搜索算法能够探索高维构象空间及其坚固的能量景观。提出了一个新颖的概率搜索框架,该框架可以收集有关其探索空间的信息,并采用此信息来迈向有希望的未开发空间区域。综上所述,这些研究方向允许通过制定和利用几何和充满活力的约束来解决蛋白质的复杂性,从而将感兴趣的搜索空间缩小到满足约束的区域,并采用一种新颖的概率框架,并采用具有增强的采样能力来搜索空间的相关区域,从而可以预见的是开发的概况,从而可以预见到概述。由于大多数实践感兴趣的问题都是高维的,并且经常表现出复杂的非线性空间,因此拟议的研究跨越了计算机科学中的多个领域,例如机器人运动计划,在复杂的非线性空间中优化,以及对复杂物理系统的建模和模拟和模拟。特别是,该研究将揭示连续高维搜索空间的有效概率搜索策略。具有铰接机制的类比将提供有关如何在约束存在下生成有效的机器人配置的见解。在生物物理方面,该研究有望提高跨不同应用的蛋白质建模和理解。提出的活动涉及与计算机科学家,生物物理学家和化学家的跨学科合作。发现和数据将被广泛传播,以增强各种社区的科学理解。专注于课程设计和外展活动的具体教育目标是采用拟议的研究来扩大大学和大学前学生的参与的,特别着重于代表性不足的群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amarda Shehu其他文献
On the characterization of protein native state ensembles.
关于蛋白质天然状态整体的表征。
- DOI:
10.1529/biophysj.106.094409 - 发表时间:
2007 - 期刊:
- 影响因子:3.4
- 作者:
Amarda Shehu;L. Kavraki;C. Clementi - 通讯作者:
C. Clementi
From Optimization to Mapping: An Evolutionary Algorithm for Protein Energy Landscapes
从优化到映射:蛋白质能量景观的进化算法
- DOI:
10.1109/tcbb.2016.2628745 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Emmanuel Sapin;K. De Jong;Amarda Shehu - 通讯作者:
Amarda Shehu
Reconstructing and mining protein energy landscape to understand disease
重建和挖掘蛋白质能量景观以了解疾病
- DOI:
10.1109/bibm.2017.8217619 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Wanli Qiao;T. Maximova;X. Fang;E. Plaku;Amarda Shehu - 通讯作者:
Amarda Shehu
Molecules in motion: Computing structural flexibility
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Amarda Shehu - 通讯作者:
Amarda Shehu
An Evolutionary Search Algorithm to Guide Stochastic Search for Near-Native Protein Conformations with Multiobjective Analysis
一种进化搜索算法,通过多目标分析指导随机搜索近天然蛋白质构象
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Brian S. Olson;Amarda Shehu - 通讯作者:
Amarda Shehu
Amarda Shehu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amarda Shehu', 18)}}的其他基金
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Intergovernmental Personnel Act
政府间人事法
- 批准号:
1948645 - 财政年份:2019
- 资助金额:
$ 54.99万 - 项目类别:
Intergovernmental Personnel Award
Collaborative: SI2-SSE - A Plug-and-Play Software Platform of Robotics-Inspired Algorithms for Modeling Biomolecular Structures and Motions
协作:SI2-SSE - 用于生物分子结构和运动建模的机器人启发算法的即插即用软件平台
- 批准号:
1440581 - 财政年份:2015
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Travel Awards for 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM-2015)
2015 年 IEEE 国际生物信息学和生物医学会议 (BIBM-2015) 旅行奖
- 批准号:
1543744 - 财政年份:2015
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
CCF: AF: Small: Novel Stochastic Optimization Algorithms to Advance the Treatment of Dynamic Molecular Systems
CCF:AF:Small:新型随机优化算法推进动态分子系统的治疗
- 批准号:
1421001 - 财政年份:2014
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Workshop: 2014 NSF CISE CAREER Proposal Writing Workshop
研讨会:2014 NSF CISE CAREER 提案写作研讨会
- 批准号:
1415210 - 财政年份:2013
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
AF: Small: A Unified Computational Framework to Enhance the Ab-Initio Sampling of Native-Like Protein Conformations
AF:小型:增强类天然蛋白质构象从头开始采样的统一计算框架
- 批准号:
1016995 - 财政年份:2010
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
相似国自然基金
基于多特征挖掘的高超声速目标轨迹概率预测方法研究
- 批准号:12302056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
信息物理系统基于概率统计的智能控制方法及应用
- 批准号:62303156
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向星载高效接收的全概率模拟信号处理理论与方法研究
- 批准号:62301049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑有向影响的概率不确定语言T球形模糊多属性群决策理论、方法与应用研究
- 批准号:72361026
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
考虑数据缺失机理的风电功率免补全概率预测方法
- 批准号:52307119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Integrating Geometric, Probabilistic, and Topological Methods for Phase Space Transport in Dynamical Systems
职业:集成几何、概率和拓扑方法用于动力系统中的相空间传输
- 批准号:
1150456 - 财政年份:2012
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0635606 - 财政年份:2006
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0239316 - 财政年份:2003
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
CAREER: Probabilistic Methods for Multi-Robot Collaboration
职业:多机器人协作的概率方法
- 批准号:
0093406 - 财政年份:2001
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
Career: Probabilistic Methods and Algorithms to Solve Protein Folding Problems
职业:解决蛋白质折叠问题的概率方法和算法
- 批准号:
9501997 - 财政年份:1995
- 资助金额:
$ 54.99万 - 项目类别:
Continuing grant