CAREER: Integrating Geometric, Probabilistic, and Topological Methods for Phase Space Transport in Dynamical Systems

职业:集成几何、概率和拓扑方法用于动力系统中的相空间传输

基本信息

项目摘要

The research objective of this Faculty Early Career Development (CAREER) project is to develop a firm unified foundation for the theoretical and computational analysis of the phase space transport problem. Many physical systems can be modeled as having an underlying dynamical skeleton which organizes how all the possible behaviors are related. For systems known analytically with simple time dependence, this skeleton consists of well-known mathematical structures such as invariant sets and sets which asymptotically approach or depart from such sets. But for systems of increasing interest which are non-periodic, based on data, and observed over only a short time, there are no such structures in general. The proposed research will find appropriate analogs to these structures to expand the applicability of dynamical systems results to real world data. Working in the context of fluid flows, we will develop tools using geometric, probabilistic, and topological approaches, including coherent sets, almost-invariant sets, and symbolic dynamics.Successful completion of this project will provide a new and fruitful approach for conceptualization, visualization, and extraction of information regarding the possible behaviors of a system, with applicability to fluid mechanics and beyond, such as boundaries and transitions between qualitatively different kinds of behavior in data sets defined by meteorological, financial, psychological, or population observations. Education, outreach and dissemination are integral to the project activities, aimed at four audiences: (1) undergraduates will participate in research and develop learning materials for (2) high school students, who will learn about the role of chaotic transport and its relevance in the environment and biology; (3) graduate students and faculty will explore applications of tools from dynamical systems to new problem domains through a project-based course; and the (4) global community of researchers will benefit from numerical tools disseminated online which may reveal previously hidden structure in dynamic data sets.
该教师早期职业发展(职业)项目的研究目标是为相位空间运输问题的理论和计算分析奠定坚定的统一基础。可以将许多物理系统建模为具有潜在的动力骨架,该骨骼组织了所有可能的行为如何相关。对于以简单的时间依赖性进行分析的系统,该骨架由众所周知的数学结构(例如不变集和集合)组成,这些结构渐近地接近或偏离了此类集合。但是,对于基于数据的越来越多的兴趣的系统,它是非周期性的,并且仅在短时间内观察到,通常没有这样的结构。拟议的研究将找到对这些结构的适当类似物,以将动态系统结果的适用性扩展到现实世界数据。在流体流动的背景下,我们将使用几何,概率和拓扑方法开发工具,包括连贯的集合,几乎不变的集合和象征性动态。该项目的完善完成将提供一种新的和富有成果的方法,以实现概念化,可视化的信息,以及与系统相比,依赖于系统的范围,以及依赖于系统的范围,以及与系统的范围,以及综合性的范围,以及综合性的机制,以及流动性的流动性,流动性的机制,以及流动性的流动性,以及流动性的流动性,以及流动性的综合性。由气象,财务,心理或人口观察定义的数据集中的行为类型。教育,宣传和传播是针对四个受众的项目活动不可或缺的:(1)本科生将参加(2)高中生的研究和开发学习材料,他们将了解混乱的运输及其在环境和生物学中的相关性; (3)研究生和教职员工将通过基于项目的课程探索从动态系统到新问题领域的工具的应用; (4)全球研究人员社区将受益于在线传播的数值工具,这可能会揭示动态数据集中先前隐藏的结构。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A tube dynamics perspective governing stability transitions: An example based on snap-through buckling
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shane Ross其他文献

Shane Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shane Ross', 18)}}的其他基金

Collaborative Research: Flying snakes: fluid mechanics of deforming articulated bodies
合作研究:飞蛇:关节体变形的流体力学
  • 批准号:
    2027523
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: A New Framework for Prediction of Buckling and Other Critical Transitions in Nonlinear Structural Mechanics
协作研究:预测非线性结构力学中屈曲和其他关键转变的新框架
  • 批准号:
    1537349
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Dynamical Mechanisms Influencing the Population Structure of Airborne Pathogens: Theory and Observations
影响空气传播病原体种群结构的动力学机制:理论与观察
  • 批准号:
    1100263
  • 财政年份:
    2011
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0402842
  • 财政年份:
    2004
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship Award

相似国自然基金

考虑参照依赖消费者的在线零售商信息与退货策略及其整合机制研究
  • 批准号:
    72302176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海洋来源二倍半萜MHO7靶向整合素β8/TGF-β轴调控EMT抑制三阴性乳腺癌转移的作用机制研究
  • 批准号:
    82304550
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
  • 批准号:
    32371472
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
DRGs驱动价值医疗背景下的医疗资源整合机制与优化策略研究
  • 批准号:
    72372170
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
多孔PEEK搭载CuCe纳米酶/柠康酸时序性调控线粒体代谢促进免疫化骨整合的机制研究
  • 批准号:
    82302669
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
  • 批准号:
    10637960
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Empowering Diffusion MRI Measures by Integrating White and Grey Matter Morphology
通过整合白质和灰质形态来增强扩散 MRI 测量
  • 批准号:
    8808684
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
Integrating categorical and geometric methods in non-semisimple representation theories
在非半简单表示理论中集成分类和几何方法
  • 批准号:
    1303301
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Efficiency for machine to learn discrete geometric objects
机器学习离散几何对象的效率
  • 批准号:
    21540105
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of Patterns Generated by Bivariate Residue Functions and Their Application to Graphic Design
双变量留数函数生成的模式的性质及其在平面设计中的应用
  • 批准号:
    02650257
  • 财政年份:
    1990
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了