Collaborative Research: Large-scale kinetic energy entrainment in the wind turbine array boundary layer - understanding and affecting basic flow physics
合作研究:风力涡轮机阵列边界层中的大规模动能夹带 - 理解和影响基本流动物理
基本信息
- 批准号:1133800
- 负责人:
- 金额:$ 29.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1133800 PI Meneveau/1133993 PI CastilloThe objective of this project is to develop and apply experimental and computational tools for predicting and improving wind farm performance by placing particular attention on large scales of turbulence and vertical fluxes of kinetic energy that are of great significance for large arrays of wind turbines. Much effort has been devoted in recent years to increasing the efficiency of individual wind turbines, assuming a given inflow in front of the turbine. Also, understanding how wakes affect the performance of downstream turbines and modeling superpositions of multiple such wakes has received considerable attention; however, there has been relatively little fundamental understanding of how a large array of wind turbines interacts with the turbulent atmospheric boundary layer at larger scales in the wind turbine array boundary layer (WTABL). Recent research has demonstrated that an important performance-limiting factor for large wind farms is the rate at which kinetic energy can be entrained into the array from the flow aloft, above the wind turbines. No matter how efficient an individual wind turbine is, or how well it can adapt to an upstream wind turbine, ultimately it is the vertical flux of kinetic energy into the overall array that largely determines how much power can be extracted from the atmospheric flow. The questions addressed in this project aim at better understanding the limiting factors and the effects of different scales of turbulence on vertical entrainment processes. The resulting models should guide wind turbine placement strategies and possible flow modifications so that vertical entrainment rates can be increased. Specifically, wind tunnel experiments coupled with large-eddy simulations (LES) will be employed to address the following research questions: (a) What are the essential differences between the developing and the fully developed WTABL? (b) What is the relative contribution from streamwise large-scale coherent vortices to vertical entrainment of kinetic energy? (c) What are the space-time correlations of hub-height velocity and power output between different wind turbines in the array? (d) Are there particular arrangements of wind turbines in the array that increase, on average, the entrainment? and (e) Can large-scale flow structures be affected through rotor modifications to increase such entrainment? Addressing such questions requires the ability to experiment under the highly controlled and reproducible conditions that can be afforded in the wind tunnel experiments and computer simulations. The data will be supplemented with comparisons with relevant new field data from a large wind farm. Broader impacts: The robust growth of wind energy implies the possibility that large portions of the land and near-shore surface of the US and the world may ultimately be used for large wind farms. Predicting and better understanding the physical processes coupling the modified surface and atmosphere under such conditions is a timely and critical area of research. Through project activities the PIs will help train the next generation of engineers and scientists with the necessary tools and insights to help reach the US goal of 20% wind energy by 2030. Graduate education/mentoring will stress the interplay between wind tunnel experimentation, computer simulation and field data analysis. International (Switzerland, Spain) and industrial experiences (General Electric) will also be emphasized in this project. Recruiting and outreach will leverage both PIs' ongoing efforts to recruit US Hispanic graduate students through contacts in Puerto Rico (NSF-AGEP and LSAMP), as well as an IGERT at JHU on modeling complex systems. A GK-12 at RPI on energy and environment will leverage NSF resources in training teachers on wind energy issues. The PI's ongoing outreach to a Baltimore high school will be continued, providing research experiences for high-school juniors and seniors.
1133800 PI MENEVEAU/1133993 PI CASTILLOTHE该项目的目标是开发和应用实验和计算工具,通过将大量的湍流和垂直磁力范围放在风力涡轮机阵列中具有重要意义,以预测和改善风电场性能。 近年来,假设在涡轮机前的流入,近年来已经大量努力提高了单个风力涡轮机的效率。同样,了解唤醒的方式如何影响下游涡轮机的性能和对多个此类唤醒的叠加的建模也受到了极大的关注。但是,对大量风力涡轮机如何与风力涡轮机阵列边界层(WTABL)较大尺度上的湍流大气边界层相互作用的基本了解相对较少。最近的研究表明,大型风电场的重要性能限制因素是可以从高高的风力涡轮机上方的流动流入阵列中的动能的速度。无论单独的风力涡轮机有多效率,或能够适应上游风力涡轮机的能力,最终,动能的垂直通量向整体阵列中的垂直通量很大程度上决定了从大气流中提取多少功率。 该项目中解决的问题旨在更好地理解不同湍流对垂直夹带过程的限制因素和影响。 最终的模型应引导风力涡轮机放置策略和可能的流动修改,以便可以提高垂直夹带率。具体而言,将采用风洞实验以及大涡模拟(LES)来解决以下研究问题:(a)开发与完全开发的WTABL之间有什么基本差异? (b)流向大规模相干涡旋到动能垂直夹带的相对贡献是什么? (c)阵列中不同风力涡轮机之间的集线器高速速度和功率输出的时空相关性是什么? (d)阵列中风力涡轮机的特殊排列平均增加了吗? (e)大规模流量结构是否可以通过转子修改影响以增加这种夹带?解决此类问题需要在风洞实验和计算机模拟中可以提供的高度控制和可重复的条件下进行实验。这些数据将与来自大型风电场的相关新现场数据进行比较。 更广泛的影响:风能的强大增长意味着最终将大部分土地和近岸表面的大部分地区用于大型风电场。预测并更好地理解在这种条件下将修饰的表面和大气耦合的物理过程是及时且关键的研究领域。通过项目活动,PI将帮助培训下一代工程师和科学家的必要工具和见解,以帮助达到20%的风能到2030年的目标。研究生教育/指导将强调风洞实验,计算机模拟和现场数据分析之间的相互作用。国际(瑞士,西班牙)和工业经验(通用电气)也将在该项目中得到强调。招募和外展将通过波多黎各的联系(NSF-AGEP和LSAMP)以及JHU的IGERT进行建模复杂系统,从而利用PIS的持续努力来招募我们的西班牙裔研究生。 RPI的GK-12关于能源和环境将利用NSF资源在培训风能问题的培训教师中。 PI将继续向巴尔的摩高中进行持续的宣传,为高中生和老年人提供研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Meneveau其他文献
Multifractality in a nested velocity gradient model for intermittent turbulence
间歇性湍流嵌套速度梯度模型中的多重分形
- DOI:
10.1103/physrevfluids.7.014609 - 发表时间:
2022-01 - 期刊:
- 影响因子:2.7
- 作者:
Yuan Luo;Yipeng Shi;Charles Meneveau - 通讯作者:
Charles Meneveau
Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building
浸没在立方体建筑尾流中的风力涡轮机的大涡模拟
- DOI:
10.1016/j.renene.2020.08.156 - 发表时间:
2021 - 期刊:
- 影响因子:8.7
- 作者:
Mingwei Ge;Dennice F. Gayme;Charles Meneveau - 通讯作者:
Charles Meneveau
Charles Meneveau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Meneveau', 18)}}的其他基金
Research Infrastructure: CC* Data Storage: 20 Petabyte Campus Research Storage Facility at Johns Hopkins University
研究基础设施:CC* 数据存储:约翰霍普金斯大学 20 PB 校园研究存储设施
- 批准号:
2322201 - 财政年份:2023
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Frameworks: Advanced Cyberinfrastructure for Sustainable Community Usage of Big Data from Numerical Fluid Dynamics Simulations
框架:先进的网络基础设施,促进社区可持续利用数值流体动力学模拟中的大数据
- 批准号:
2103874 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Dynamics of macro-vortices in horizontal axis turbine wind farms
水平轴涡轮风电场宏观涡动力学
- 批准号:
1949778 - 财政年份:2020
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743179 - 财政年份:2018
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
EPSRC-CBET:Turbulent flows over heterogeneous multiscale surfaces
EPSRC-CBET:异质多尺度表面上的湍流
- 批准号:
1738918 - 财政年份:2017
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
BIGDATA: IA: Democratizing Massive Fluid Flow Simulations via Open Numerical Laboratories and Applications to Turbulent Flow and Geophysical Modeling
BIGDATA:IA:通过开放数值实验室以及湍流和地球物理建模应用使大规模流体流动模拟大众化
- 批准号:
1633124 - 财政年份:2016
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
CDS&E: Studying Multiscale Fluid Turbulence via Open Numerical Laboratories
CDS
- 批准号:
1507469 - 财政年份:2015
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
PIRE: USA/Europe Partnership for Integrated Research and Education in Wind Energy Intermittency: From Wind Farm Turbulence to Economic Management
PIRE:美国/欧洲风能间歇性综合研究和教育合作伙伴关系:从风电场湍流到经济管理
- 批准号:
1243482 - 财政年份:2012
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Large-Eddy-Simulation Studies and In-situ Observations of Land Atmosphere Exchanges in Large Wind Farms
大型风电场陆地大气交换的大涡模拟研究和现场观测
- 批准号:
1045189 - 财政年份:2011
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Studying turbulent scale and space interactions using active grid wind tunnel and DNS database experiments
使用主动网格风洞和 DNS 数据库实验研究湍流尺度和空间相互作用
- 批准号:
1033942 - 财政年份:2010
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
相似国自然基金
基于深度学习的大尺度重磁异常正反演研究
- 批准号:42374174
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于环肽的穴状大环超分子体系构筑及其分子选择键合研究
- 批准号:22371148
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
环境扰动与有限测量下大天线高精度跟踪指向控制技术的研究
- 批准号:12303099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于力学克尔效应的大带宽、低功耗片上集成光学非互易器件研究
- 批准号:62305316
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年肌阵挛性癫痫发作控制与复发的脑网络系统动力稳定性大时间尺度演化机制研究
- 批准号:82301640
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant