Photocatalytic Reduction of Nitrate in Water

光催化还原水中的硝酸盐

基本信息

  • 批准号:
    1132779
  • 负责人:
  • 金额:
    $ 29.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

1132779WesterhoffNitrate (NO3-) is one the most prevalent ground-water contaminants in North America and world-wide. It poses a risk to human health and has a large impact on the natural nitrogen cycle. Nitrate is regulated by the USEPA in drinking water because it is a known cause of methemoglobinemia, or ?blue baby? syndrome, and could possibly be a carcinogen or endocrine disruptor. Nitrate is a soluble ion that is difficult to remove by traditional coagulation or adsorption processes. Risks from oxidized pollutants are best mitigated through chemical or biological reduction to innocuous forms (e.g., N2 from NO3-). Photocatalytic reduction has been reported for decades, yet has not been investigated from an engineering approach for nitrate reduction. Research initiated by the discovery of Honda-Fujishima effect for photocatalytic water splitting (e.g., production of hydrogen as a renewable fuel) and subsequent advances in metal loading of semiconductors suggest that nitrate reduction in near neutral pH without addition of sacrificial agents is possible. Furthermore, it now appears possible that photocatalytic NO3- reduction in water could yield innocuous by-products (N2) instead of undesirable by-products that require additional treatment (e.g., ammonia). Photolysis for disinfection is commonplace in the drinking water industry over the past decade and use of light-based technologies for water treatment will continue to evolve because of their effectiveness, small size footprint, ability to operate without wastestreams, etc. Translational research from the fields of chemistry, material science and physics, where reductive photocatalysts are developed for splitting water, is proposed to be applied towards engineered technologies for nitrate removal from water. The PI?s preliminary data demonstrate the feasibility to photocatalytically reduce nitrate and yield gaseous-N by-products. The goal of this project is to explore and optimize the use of photocatalysts as a reductive technology for treating nitrate in drinking water applications. The underlying hypothesis is nitrate can be converted to innocuous aqueous species in drinking water applications using metal-loaded photocatalysts. The primary research objectives will be to: (1) Understand factors and mechanisms affecting NO3- reduction to N2 for different types of photocatalysts; (2) Apply photocatalyst for NO3- reduction in ion exchange brines and local groundwaters; (3) Investigate practical aspects of photoreactor operation (slurry and fixed film photocatalyst reactors) including role of catalyst ?aging? on catalyst performance in reducing NO3- and catalyst recovery; (4) Screen novel photocatalysts for nitrate and other oxo-anion reduction and develop a framework for selecting emerging photocatalysts for reduction of oxidized pollutants. The preferred outcome is to achieve nitrate treatment under ambient conditions (e.g., pH) and without the need of adding an organic hole scavenger.The project focuses on nitrate, the most prevalent groundwater contaminant in the USA and throughout many other parts the world. Managing the nitrogen cycle is one of the National Academy of Engineering Grand Challenges. Nitrate limits the use of the groundwater for potable purposes, and is a major cause of eutrophication in surface waters. The project will provide societal benefits as well as benefits to individual students. The primary intent is to disseminate knowledge and credible data on issues related to nitrate in drinking water and potential strategies to treat the water. Towards this end the team plans to organize sessions at conferences and develop an open-access website related to nitrate occurrence, health risks and treatment. The research will educate PhD students in environmental engineering and serve as a thesis topic for MS students at a non PhD-degree granting institution. The project will serve as a theme for several capstone senior projects, as part of a project oriented learning curriculum. This project also will support Obama Scholars at ASU (first-time underrepresented undergraduate student), such as a female Hispanic sophomore Civil Engineering student who has been instrumental in obtaining preliminary data for this proposal. Student(s) working on this project will participate in an experience in Washington, DC for 2 weeks where they will learn how science becomes policy.
1132779Westerhoff 硝酸盐 (NO3-) 是北美和世界范围内最普遍的地下水污染物之一。 它对人类健康构成风险,并对自然氮循环产生很大影响。 美国环保局对饮用水中的硝酸盐进行监管,因为它是导致高铁血红蛋白血症或“蓝婴”的已知原因。综合征,并且可能是致癌物或内分泌干扰物。 硝酸盐是一种可溶性离子,很难通过传统的混凝或吸附工艺去除。 氧化污染物的风险最好通过化学或生物还原为无害形式(例如,NO3- 中的 N2)来降低。 光催化还原已被报道数十年,但尚未从硝酸盐还原的工程方法进行研究。 由发现光催化水分解的本田-藤岛效应(例如,生产氢气作为可再生燃料)以及随后在半导体金属负载方面取得的进展而发起的研究表明,在接近中性 pH 值的情况下不添加牺牲剂的硝酸盐还原是可能的。 此外,现在看来,光催化还原水中的 NO3 可能会产生无害的副产品 (N2),而不是需要额外处理的不良副产品(例如氨)。 过去十年来,光解消毒在饮用水行业中很常见,基于光的水处理技术的使用将继续发展,因为其有效性、占地面积小、无需废水流即可运行等。各领域的转化研究化学、材料科学和物理学的交叉学科,其中开发用于分解水的还原光催化剂,建议应用于从水中去除硝酸盐的工程技术。 PI 的初步数据证明了光催化还原硝酸盐并产生气态氮副产品的可行性。 该项目的目标是探索和优化光催化剂的使用,作为处理饮用水应用中硝酸盐的还原技术。 基本假设是,在饮用水应用中,使用负载金属的光催化剂可以将硝酸盐转化为无害的水性物质。 主要研究目标是:(1)了解不同类型光催化剂影响NO3还原为N2的因素和机制; (2)应用光催化剂还原离子交换卤水和当地地下水中的NO3-; (3) 研究光反应器操作(浆料和固定膜光催化剂反应器)的实际问题,包括催化剂老化的作用?催化剂还原NO3-的性能和催化剂回收; (4)筛选用于还原硝酸盐和其他含氧阴离子的新型光催化剂,并开发用于选择用于还原氧化污染物的新兴光催化剂的框架。 首选结果是在环境条件(例如 pH 值)下实现硝酸盐处理,且无需添加有机空穴清除剂。该项目重点关注硝酸盐,这是美国和世界许多其他地区最普遍的地下水污染物。 管理氮循环是美国国家工程院面临的重大挑战之一。 硝酸盐限制了地下水用于饮用水的用途,并且是地表水富营养化的主要原因。 该项目将为社会效益以及学生个人带来好处。 主要目的是传播有关饮用水中硝酸盐问题的知识和可靠数据以及潜在的水处理策略。 为此,该团队计划在会议上组织会议,并开发一个与硝酸盐发生、健康风险和治疗相关的开放访问网站。 该研究将为环境工程博士生提供教育,并作为非博士学位授予机构硕士生的论文主题。 该项目将作为几个顶点高级项目的主题,作为项目导向学习课程的一部分。该项目还将支持亚利桑那州立大学的奥巴马学者(首次代表性不足的本科生),例如一名西班牙裔女二年级土木工程学生,她在获得该提案的初步数据方面发挥了重要作用。 从事该项目的学生将在华盛顿特区参加为期两周的体验,在那里他们将了解科学如何成为政策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Westerhoff其他文献

Advanced oxidation processes may transform unknown PFAS in groundwater into known products.
高级氧化过程可能会将地下水中未知的 PFAS 转化为已知产品。
  • DOI:
    10.1016/j.chemosphere.2023.140865
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Mahmut S. Ersan;Bo Wang;Michael S. Wong;Paul Westerhoff
  • 通讯作者:
    Paul Westerhoff
ournal of C osmology and A stroparticle P hysics J General dissipation coefficient in low-temperature warm inflation
宇宙学与星体粒子物理学杂志 J 低温暖膨胀中的一般耗散系数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charbel Abou;Liliya Chernysheva;Anthony M. Miller;Angela Abarca;Graham Peaslee;P. Herckes;Paul Westerhoff;Kyle Doudrick
  • 通讯作者:
    Kyle Doudrick
Boosting Hydrogen Production via Water Splitting: An ITO Plus g-C3N4 Nanomaterial Enabled Polymer Optical Fiber Design
通过水分解促进氢气生产:ITO 加 g-C3N4 纳米材料支持的聚合物光纤设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Han Fu;Tzu;R. Doong;Y. Lai;Sergi Garcia;Zhe Zhao;Paul Westerhoff
  • 通讯作者:
    Paul Westerhoff
Global-to-Local Dependencies in Phosphorus Mass Flows and Markets: Pathways to Improving System Resiliency in Response to Exogenous Shocks
磷质量流量和市场的全球到地方依赖性:提高系统应对外源冲击弹性的途径
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Baker;Nathan Schunk;Matt Scholz;Ashton W. Merck;Rebecca Logsdon Muenich;Paul Westerhoff;James J. Elser;Owen W. Duckworth;Luke Gatiboni;Minhazul Islam;Anna;Rosangela Sozzani;Brooke K. Mayer
  • 通讯作者:
    Brooke K. Mayer
Subtractive Engineering of Polymer Cladding Induces Tunable UV-C Irradiation from Flexible Side-Emitting Optical Fibers for Biofilm Control in Curved Piping
聚合物包层的消减工程从柔性侧发射光纤中诱导可调谐 UV-C 辐射,用于弯曲管道中的生物膜控制
  • DOI:
    10.1021/acsestengg.3c00340
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Zhao;Nora Shapiro;B. Mobasher;Tzu;David Smith;Shahnawaz Sinha;Li Ling;François Perreault;Paul Westerhoff
  • 通讯作者:
    Paul Westerhoff

Paul Westerhoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Westerhoff', 18)}}的其他基金

Collaborative Research: ISS: Biofilm Inhibition with Germicidal Light Side-Emitted from Nano-enabled Flexible Optical Fibers in Water Systems
合作研究:ISS:水系统中纳米柔性光纤侧面发射的杀菌光抑制生物膜
  • 批准号:
    2224449
  • 财政年份:
    2022
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
RAPID: Disinfection and Reuse of Health-Care Worker Facial Masks to Prevent Infection coronavirus disease
RAPID:对医护人员口罩进行消毒和重复使用,以预防感染冠状病毒
  • 批准号:
    2028074
  • 财政年份:
    2020
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Sustainable Nanotechnology in the 2020's
2020年代的可持续纳米技术
  • 批准号:
    1936159
  • 财政年份:
    2019
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Approach to Understanding and Spatially Modeling Haloacetonitrile Disinfection By-Products Associated with De Facto Wastewater Reuse
合作研究:了解与实际废水再利用相关的卤代乙腈消毒副产物并对其进行空间建模的综合方法
  • 批准号:
    1804229
  • 财政年份:
    2018
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Conference: Environmental Nanotechnology: Gordon Research Center and Gordon Research Seminar, June 20-21, 2015, Mount Snow Resort, West Dover, Vermont
会议:环境纳米技术:戈登研究中心和戈登研究研讨会,2015 年 6 月 20-21 日,佛蒙特州西多佛山雪山度假村
  • 批准号:
    1523256
  • 财政年份:
    2015
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
UNS:GOALI: Collaborative Research: Aquatic Fate and Toxicity of III-V Materials in the Presence of Nanoparticles Used in Industrial Polishing Processes
UNS:GOALI:合作研究:工业抛光过程中使用的纳米粒子存在下 III-V 族材料的水生命运和毒性
  • 批准号:
    1507750
  • 财政年份:
    2015
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Nanoprospecting: An Approach Towards Environmental Monitoring of Engineered Nanomaterials
纳米勘探:工程纳米材料环境监测的方法
  • 批准号:
    1336542
  • 财政年份:
    2013
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Conference: 2013 Environmental Nanotechnology GRC, Stove, VT, June 2 - 7, 2013
会议:2013 年环境纳米技术 GRC,佛蒙特州斯托夫,2013 年 6 月 2 日至 7 日
  • 批准号:
    1322232
  • 财政年份:
    2013
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Pathway Generation and Byproduct Estimation for Chemical Oxidation Processes in Water Treatment
水处理中化学氧化过程的路径生成和副产物估算
  • 批准号:
    0607332
  • 财政年份:
    2006
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant

相似国自然基金

去脂软肝方基于“脾主肌肉”理论从AMPK信号通路防治代谢相关脂肪性肝病合并骨骼肌减少症分子机制研究
  • 批准号:
    82360886
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
三氯蔗糖通过减少肠道菌群代谢产物吲哚-3-丙酸促进动脉粥样硬化的作用及机制研究
  • 批准号:
    82304148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GSK-3β抑制剂调控巨噬细胞内质网应激在原发免疫性血小板减少症中的作用及机制
  • 批准号:
    82370130
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
益气除痰方调控丝氨酸肠-肺代谢交流减少肺癌转移的机制研究
  • 批准号:
    82304979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SFN-RAB7互作通过溶酶体自噬减少外泌体传递LncRNA H19调控肿瘤血管生成和鼻咽癌恶性进展
  • 批准号:
    82360528
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Single-Atom Alloy Catalyst Design for the Electrocatalytic Reduction of Nitrate to Ammonia: Linking Electronic Structure to Geometry and Catalytic Performance
职业:用于硝酸盐电催化还原为氨的单原子合金催化剂设计:将电子结构与几何结构和催化性能联系起来
  • 批准号:
    2236138
  • 财政年份:
    2023
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Continuing Grant
Evaluation of nitrate reduction ability using tea varieties and elucidation of factors making differences between varieties
茶树品种硝态氮还原能力评价及品种间差异因素分析
  • 批准号:
    23K19287
  • 财政年份:
    2023
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Understanding the Interdependence of Cation and Anion Adsorption for Electrocatalytic Nitrate Reduction
职业:了解电催化硝酸盐还原中阳离子和阴离子吸附的相互依赖性
  • 批准号:
    2236770
  • 财政年份:
    2023
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Saturated, suffocated, and salty: Hotspots of ammonium-N & dissimilatory nitrate reduction to ammonium-denitrification dichotomy in anoxic riparian soil
合作研究:饱和、窒息和咸味:铵态氮的热点
  • 批准号:
    2213855
  • 财政年份:
    2022
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Saturated, suffocated, and salty: Hotspots of ammonium-N & dissimilatory nitrate reduction to ammonium-denitrification dichotomy in anoxic riparian soil
合作研究:饱和、窒息和咸味:铵态氮的热点
  • 批准号:
    2213856
  • 财政年份:
    2022
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了