Ionic Electroactive Polymer Actuators with Tailored NanoStructure Morphology
具有定制纳米结构形态的离子电活性聚合物致动器
基本信息
- 批准号:1130437
- 负责人:
- 金额:$ 50.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this grant is to elucidate the fundamental micro- and nano-scopic processes that are responsible for the observed electromechanical responses in ionic electroactive polymers (i-EAPs). Electroactive polymers, because of their many attractive properties and characteristics including high strain response, low density, fracture tolerance, and pliability, are suitable for a broad range of sensing and actuating applications. i-EAPs that can be operated under a few volts are particularly attractive because this allows direct integration with advanced microelectronics, which opens up an entirely new device paradigm for multifunctional large-scale integrations. However, i-EAPs suffer relatively low efficiency as well as low actuation speed. The porous electrodes in traditional i-EAPs have a random morphology that physically impedes ion transport, resulting in slow response times and reduced efficiency. The proposed study will exploit i-EAPs with uniquely controlled and tunable nanostructure morphology and investigate ionic liquids that can maximize the strain generated and actuation speed. Ion size, and its transport through similarly sized (and controllable) nanoscale channels, has the potential to uncover new physics limiting transport. By systematically tailoring the nanostructure morphology, and varying the ionic liquids, we intend to unravel fundamental processes controlling the electromechanical response in the i-EAP materials and devices.If successful, this interdisciplinary collaborative effort will expand the known i-EAP materials, allow the operation of i-EAP devices to much above the electrochemical window of the electrolytes, develop an understanding of ion transport and storage in nanocomposites with known nanostructure morphology, and provide structure-property relations for different ions in i-EAP materials. This collaborative program between Penn State and MIT will provide education and training of graduate students and undergraduate in a multi-disciplinary exchange context, ranging from nano-materials science and engineering, nanocomposites and MEMs fabrication techniques, advanced nano-materials characterizations, through to device-level integration. This program will pursue a proliferation of the broad-impact results from this program by disseminating video features depicting the broad energy applications of advanced materials and nanotechnology to high-schools and county libraries and other institutions and two graduate courses will be enhanced. The program will also actively disseminate knowledge through public media outlets as appropriate, such as institutional press releases and the Discovery & Science Channels.
该资助的研究目的是阐明导致离子电活性聚合物(i-EAP)中观察到的机电响应的基本微观和纳米过程。 电活性聚合物由于其许多有吸引力的特性和特性,包括高应变响应、低密度、断裂容限和柔韧性,适用于广泛的传感和驱动应用。 可以在几伏电压下工作的 i-EAP 特别有吸引力,因为它可以与先进的微电子技术直接集成,从而为多功能大规模集成开辟了全新的设备范例。 然而,i-EAP 的效率相对较低,驱动速度也较低。 传统 i-EAP 中的多孔电极具有随机形态,会物理阻碍离子传输,导致响应时间缓慢并降低效率。 拟议的研究将利用具有独特控制和可调纳米结构形态的 i-EAP,并研究可以最大化产生的应变和驱动速度的离子液体。 离子尺寸及其通过类似尺寸(且可控)纳米级通道的传输有可能发现新的物理限制传输。 通过系统地定制纳米结构形态并改变离子液体,我们打算揭示控制 i-EAP 材料和器件中机电响应的基本过程。如果成功,这一跨学科合作努力将扩展已知的 i-EAP 材料,使i-EAP 设备的运行远高于电解质的电化学窗口,加深对具有已知纳米结构形态的纳米复合材料中离子传输和存储的理解,并提供 i-EAP 中不同离子的结构-性能关系 材料。 宾夕法尼亚州立大学和麻省理工学院之间的这一合作项目将在多学科交流背景下为研究生和本科生提供教育和培训,范围从纳米材料科学与工程、纳米复合材料和 MEM 制造技术、先进纳米材料表征到设备级集成。该计划将通过向高中、县图书馆和其他机构传播描述先进材料和纳米技术广泛能源应用的视频专题,以扩大该计划的广泛影响力成果,并将加强两门研究生课程。 该计划还将酌情通过机构新闻稿和探索与科学频道等公共媒体积极传播知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiming Zhang其他文献
High-efficiency piezoelectric motor combining continuous rotation with precise control over angular positioning
高效压电电机将连续旋转与角度定位的精确控制相结合
- DOI:
10.1063/1.124538 - 发表时间:
1999 - 期刊:
- 影响因子:4
- 作者:
A. Glazounov;S. Wang;Qiming Zhang;Chul - 通讯作者:
Chul
Existence and stability of pseudo almost periodic solutions for shunting inhibitory cellular neural networks with neutral type delays and time-varying leakage delays
具有中性型时滞和时变泄漏时滞的分流抑制细胞神经网络伪几乎周期解的存在性和稳定性
- DOI:
10.3109/0954898x.2014.978406 - 发表时间:
2014-11 - 期刊:
- 影响因子:0
- 作者:
徐昌进;Qiming Zhang - 通讯作者:
Qiming Zhang
Correlation Between Large Electrostrictive Strain and Relaxor Behavior with Structural Changes Induced in P(VDF-TrFE) Copolymer by Electron Irradiation
大电致伸缩应变和弛豫行为与电子辐照引起的 P(VDF-TrFE) 共聚物结构变化的相关性
- DOI:
10.1557/proc-541-653 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
V. Bharti;Y. Ye;T. Xu;Qiming Zhang - 通讯作者:
Qiming Zhang
Anti-periodic solutions for a shunting inhibitory cellular neural networks with distributed delays and time-varying delays in the leakage terms
具有分布延迟和泄漏项时变延迟的分流抑制细胞神经网络的反周期解
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
徐昌进;Qiming Zhang - 通讯作者:
Qiming Zhang
Bifurcation analysis for two-neuron networks with discrete and distributed delays
具有离散和分布式延迟的双神经元网络的分岔分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:5.4
- 作者:
徐昌进;Qiming Zhang;Yusen Wu - 通讯作者:
Yusen Wu
Qiming Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiming Zhang', 18)}}的其他基金
SusChEM: Collaborative Research: Theoretical and Experimental Investigation of Iron Oxysulfide for Terawatt Photovoltaics
SusChEM:合作研究:太瓦光伏发电中氧硫化铁的理论与实验研究
- 批准号:
1306291 - 财政年份:2013
- 资助金额:
$ 50.16万 - 项目类别:
Standard Grant
Ultra-sensitive Magnetic Sensors Integrating the Giant Magnetoelectric Effect with MEMs and Advanced Microelectronics
将巨磁电效应与 MEM 和先进微电子学相结合的超灵敏磁传感器
- 批准号:
0824202 - 财政年份:2008
- 资助金额:
$ 50.16万 - 项目类别:
Standard Grant
GOALI: Electroactive Polymers for Electromechanical and Dielectric Applications
GOALI:用于机电和介电应用的电活性聚合物
- 批准号:
9710459 - 财政年份:1997
- 资助金额:
$ 50.16万 - 项目类别:
Standard Grant
相似国自然基金
电活性离子聚合物大变形换能机制及低风速颤振俘能研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
电活性生物膜对重金属离子急性刺激的耐受特征及调控机制
- 批准号:21906028
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于电活性有机物的钠离子全电池的设计、构建与电化学表征
- 批准号:21773057
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
自掺杂聚合物储钠正极材料的电化学性能研究
- 批准号:21403057
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
用于锂离子电池可逆过充保护的电压敏感隔膜
- 批准号:20773095
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
3D Printed Electroactive Polymer Scaffolds for Self-Regulated Drug Delivery for Bone Regeneration
3D 打印电活性聚合物支架用于自我调节药物输送以促进骨再生
- 批准号:
553508-2020 - 财政年份:2020
- 资助金额:
$ 50.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Microengineered electroactive polymer strain sensors towards soft self-powered wearable cyber-physical systems
合作研究:面向软自供电可穿戴网络物理系统的微工程电活性聚合物应变传感器
- 批准号:
1809852 - 财政年份:2018
- 资助金额:
$ 50.16万 - 项目类别:
Standard Grant
Digital light processing of 3D electroactive polymer transducers for lab on a chip applications
用于芯片实验室应用的 3D 电活性聚合物传感器的数字光处理
- 批准号:
526843-2018 - 财政年份:2018
- 资助金额:
$ 50.16万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Microengineered electroactive polymer strain sensors towards soft self-powered wearable cyber-physical systems
合作研究:面向软自供电可穿戴网络物理系统的微工程电活性聚合物应变传感器
- 批准号:
1809455 - 财政年份:2018
- 资助金额:
$ 50.16万 - 项目类别:
Standard Grant
Electroactive polymer actuators and arrays for adjustable breathability in confined building structures (C03)
用于在受限建筑结构中调节透气性的电活性聚合物执行器和阵列(C03)
- 批准号:
324881278 - 财政年份:2017
- 资助金额:
$ 50.16万 - 项目类别:
Collaborative Research Centres