Collaborative Research: Microengineered electroactive polymer strain sensors towards soft self-powered wearable cyber-physical systems

合作研究:面向软自供电可穿戴网络物理系统的微工程电活性聚合物应变传感器

基本信息

项目摘要

Recent research efforts have emphasized the vital role of soft strain sensors in a variety of applications in bioengineering, rehabilitation and medicine, soft robotics, and human-machine interactions. Current soft strain sensors often necessitate external power for operation that severely limits the possibility to make such sensors light weight, comfortable to wear, and capable of functioning over long periods of time. On the other hand, existing self-powered sensors, such as piezoelectric ceramics, are typically very stiff, non-stretchable, and limited to extremely small deformations. Thus, there exists a clear and urgent need to identify novel sensing systems that combine self-powered behavior with soft mechanical characteristics. This research will result in the development of the next generation of soft, self-powered, high sensitivity polymer-based strain sensors for applications in novel biomedical and soft robotics endeavors. When successfully deployed, these sensors could be embedded in smart gloves for use in hand rehabilitation by patients suffering from stroke or Parkinson's disease, as well as an instrumentation suite for prosthetic devices or in human-machine interfaces, or could be embedded in wearable adhesive patches and interfaced with smartphones and the internet for continuous remote personal health monitoring of vital signs. Furthermore, this project will lead to discover novel electroactive materials systems, promote advancements in advanced manufacturing and mechatronics, and benefit the multiphysics modeling community. This research will support and impact the education of graduate and undergraduate students, contributing to the formation of the next generation of researchers, engineers, and educators. Active involvement of underrepresented students will be pursued via educational and outreach activities. This project aims at establishing a new class of electroactive materials with superior multiphysics properties towards soft, self-powered, high sensitivity strain sensor applications in cyber-physical systems. Ionic polymer metal composites are electroactive soft composite materials that comprise a thin electrically charged polymer membrane, plated with noble metal electrodes, and infused with a charged solution. Due to their combined self-powered sensor behavior and soft mechanical characteristics, ionic polymer metal composites emerge as an ideal candidate for soft strain sensor applications. However, inconsistent and uncontrollable morphology of their polymer-metal interfaces poses the challenges of limited sensitivity, poor property control, and non-versatile mode of operation. So far, these challenges have limited the use of these materials in critical engineering applications. It is hypothesized that the multiphysics sensing properties of ionic polymer metal composites can be dramatically enhanced by tailored 3D-structured microengineered polymer-metal interfaces. To test this hypothesis, this research will develop a novel fabrication process integrating electroless chemical reduction with inkjet printing to prepare ionic polymer metal composites with microengineered interfaces. These interfaces are responsible for inhomogeneous strain developed in response to a mechanical stimulus and its subsequent electrochemical transduction and sensing performance. The main goal of this research is to gain a comprehensive understanding of the structure-property relationships in microengineered ionic polymer metal composites that determine enhanced strain sensing performance. This goal will be achieved by integrating theoretical multiphysics modeling and experimental efforts and by synergizing the investigators' complementary expertise in modeling of smart materials and systems, advanced manufacturing, sensing systems, and mechatronics and controls. This project will elucidate the role of polymer-electrode interfaces in shaping the chemoelectromechanical response of the system and formalize experimentally validated models that incorporate interface morphology information to predict multiphysics sensing properties. The potential of the proposed sensing system will be demonstrated by designing, manufacturing, and testing functional sensors in experimental platforms for studies on soft robotics and human-machine interaction. The knowledge gained through this project will significantly advance the state of understanding of electroactive materials towards development of high performance sensing systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的研究工作强调了软应变传感器在生物工程,康复和医学,软机器人技术和人机相互作用中的各种应用中的重要作用。当前的软应变传感器通常需要外部功率进行操作,这严重限制了使此类传感器重量轻,舒适且能够在长时间内运行的可能性。另一方面,现有的自动传感器(例如压电陶瓷)通常非常僵硬,不伸展,并且仅限于极小的变形。因此,存在明确而迫切的需求,即确定将自源行为与软机械特征相结合的新型传感系统。 这项研究将导致下一代柔软,自动化,高灵敏度聚合物的应变传感器的发展,用于在新型的生物医学和软机器人方面的应用中应用。成功部署后,这些传感器可能会嵌入智能手套中,以便由患有中风或帕金森氏病的患者手工康复,以及用于假体设备或人机界面的仪器套件,或者可以嵌入可穿戴的粘合剂斑块中并与智能手机和互联网连接,以连续远程对生命体征的个人健康监控。此外,该项目将导致发现新颖的电活性材料系统,促进高级制造和机电货币学的进步,并使多物理建模社区受益。这项研究将支持和影响研究生和本科生的教育,为下一代研究人员,工程师和教育者的形成做出贡献。将通过教育和外展活动进行积极参与不足的学生。该项目旨在建立具有卓越多物理特性的新的电活性材料,以朝着网络物理系统中的柔软,自我功率,高灵敏度应变传感器应用。离子聚合物金属复合材料是电活性软复合材料,包括薄带电荷的聚合物膜,用贵金属电极镀层,并注入带电的溶液。由于它们结合的自动传感器行为和软机械特性,因此,离子聚合物金属复合材料成为软应变传感器应用的理想候选者。然而,其聚合物 - 金属接口的不一致和不可控制的形态构成了有限的灵敏度,不良的财产控制和非反应操作方式的挑战。到目前为止,这些挑战限制了这些材料在关键工程应用中的使用。假设可以通过量身定制的3D结构化微工程聚合物 - 金属接口来显着增强离子聚合物金属复合材料的多物理感测特性。为了检验这一假设,这项研究将开发出一种新的制造过程,该过程与喷墨打印相结合,以制备具有微工程界面的离子聚合物金属复合材料。这些界面是响应机械刺激及其随后的电化学转导和感应性能而产生的不均匀菌株。这项研究的主要目的是对微工程化离子聚合物金属复合材料的结构 - 特性关系有全面的了解,从而确定增强的应变感应性能。将通过整合理论多物理学建模和实验性工作,并协同研究人员在智能材料和系统建模,高级制造,传感系统以及机电货量和控制方面的互补专业知识来实现​​此目标。该项目将阐明聚合物 - 电极界面在塑造系统的化学电机力学响应中的作用,并正式化经过实验验证的模型,这些模型结合了界面形态信息以预测多物质感应性能。提出的传感系统的潜力将通过在实验平台中设计,制造和测试功能传感器来证明,以研究软机器人和人机相互作用。通过该项目获得的知识将大大促进对电活性材料的理解状态,以发展高性能传感系统。该奖项反映了NSF的法定使命,并被认为是值得通过基金会的智力优点和更广泛的影响评估的评估来通过评估来支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface roughness effects on ionic polymer-metal composite (IPMC) sensitivity for compression loads
表面粗糙度对离子聚合物金属复合材料 (IPMC) 压缩载荷敏感性的影响
Ionic Polymer Metal Composite Sensors With Engineered Interfaces (eIPMCs): Compression Sensing Modeling and Experiments
具有工程接口的离子聚合物金属复合传感器 (eIPMC):压缩传感建模和实验
  • DOI:
    10.1115/dscc2020-3289
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Histed, Rebecca;Ngo, Justin;Hussain, Omar A.;Lapins, Chantel;Leang, Kam K.;Liao, Yiliang;Aureli, Matteo
  • 通讯作者:
    Aureli, Matteo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matteo Aureli其他文献

Matteo Aureli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matteo Aureli', 18)}}的其他基金

CAREER: Fluid-Structure-Control Interactions in Bioinspired Robots with Actively Morphing Fins
职业:具有主动变形鳍的仿生机器人中的流-结构-控制相互作用
  • 批准号:
    1847513
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant

相似国自然基金

反应性微交联弹性体的结构设计及其对工程塑料的增韧研究
  • 批准号:
    52373070
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
工程化微载体增强间充质干细胞旁分泌治疗颅脑损伤的作用机制研究
  • 批准号:
    82372505
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于肿瘤微环境乳酸控制的纳米杂合工程菌精准指导CD47纳米抗体用于结肠癌免疫治疗研究
  • 批准号:
    32301187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工程化树突状细胞膜修饰多功能基因载体重塑免疫微环境介导脑胶质瘤高效治疗研究
  • 批准号:
    32301176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TIGIT/PD-1双敲工程化T细胞扭转肝癌免疫抑制性肿瘤微环境的机制研究
  • 批准号:
    82372071
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

温泉由来油脂生産微細藻類の大量培養及び低コスト燃料生産工程に関する基礎的研究
温泉产油微藻大规模培养及低成本燃料生产工艺基础研究
  • 批准号:
    23K11526
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Microengineered Tumor-Mimetic Collagen Landscapes to Test the Role of Prognostic Structural Cues on Cell Migration Through the Extracellular Matrix
合作研究:微工程模拟肿瘤胶原蛋白景观,以测试预后结构线索对细胞通过细胞外基质迁移的作用
  • 批准号:
    2150799
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Microengineered Lollipop for Patient-Centric Saliva Collection
用于以患者为中心的唾液收集的微工程棒棒糖
  • 批准号:
    10350255
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
Optical dissection of human embryonic germ layer patterning mechanisms using microengineered stem cell models
使用微工程干细胞模型对人类胚胎胚层图案形成机制进行光学解剖
  • 批准号:
    10646246
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
Collaborative Research: Microengineered Tumor-Mimetic Collagen Landscapes to Test the Role of Prognostic Structural Cues on Cell Migration Through the Extracellular Matrix
合作研究:微工程模拟肿瘤胶原蛋白景观,以测试预后结构线索对细胞通过细胞外基质迁移的作用
  • 批准号:
    2150798
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了