Adaptive Dynamic Programming for Real-Time Cooperative Multi-Player Games and Graphical Games
实时协作多人游戏和图形游戏的自适应动态规划
基本信息
- 批准号:1128050
- 负责人:
- 金额:$ 27.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Objective of this research is to design new algorithms for decision and control in multi-player games for complex human-engineered systems interacting on communication graph topologies. Standard differential game solutions are for systems with a single dynamics and multiple action inputs. However, realistic systems are composed of agents having their own individual dynamics and only interacting with their immediate neighbors in a social graph topology. The Approach is to bring together discoveries in neurobiological learning, sociobiological systems having local interactions between agents, and multi-player differential games to develop novel feedback control structures for nonlinear dynamical systems. Intellectual Merit. Standard differential game theory solutions are generally offline design methods that rely on solving nonlinear design equations requiring knowledge of full system dynamics. Approximate Dynamic Programming techniques based on reinforcement learning will be used to develop novel adaptive control structures that learn game theory solutions online in real time using data measured along the system trajectories and without knowing full system dynamics. Solutions for different definitions of game equilibria will be sought including Nash, Pareto, Nash bargaining, and cooperative games.Broader Impacts. The research will help bridge the gap between the Computational Intelligence and the Control Systems communities by bringing together reinforcement learning, game theory, and differential dynamical systems. Applications will be made to cooperative control of distributed electric power microgrids for renewable energy such as wind and solar generation. Existing programs at UTA will be expanded in women in engineering, research for US students, high school engineering technology, and K-12 outreach.
本研究的目的是为在通信图拓扑上交互的复杂人类工程系统设计多人游戏中的决策和控制新算法。 标准微分游戏解决方案适用于具有单一动态和多个动作输入的系统。 然而,现实系统由具有自己的个体动态的代理组成,并且仅与社交图拓扑中的直接邻居进行交互。 该方法旨在将神经生物学学习、具有代理之间局部交互的社会生物学系统以及多人微分博弈方面的发现结合起来,为非线性动力系统开发新颖的反馈控制结构。 智力优点。 标准微分博弈论解决方案通常是离线设计方法,依赖于求解需要完整系统动力学知识的非线性设计方程。基于强化学习的近似动态规划技术将用于开发新颖的自适应控制结构,该结构可以使用沿系统轨迹测量的数据实时在线学习博弈论解决方案,而无需了解完整的系统动力学。 将寻求不同博弈均衡定义的解决方案,包括纳什、帕累托、纳什讨价还价和合作博弈。更广泛的影响。 该研究将强化学习、博弈论和微分动力系统结合在一起,有助于弥合计算智能和控制系统社区之间的差距。 将应用于风能、太阳能等可再生能源分布式电力微电网的协同控制。 UTA 现有的项目将扩展到女性工程、美国学生研究、高中工程技术和 K-12 外展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Lewis其他文献
Projection-Free Distributed Optimization With Nonconvex Local Objective Functions and Resource Allocation Constraint
具有非凸局部目标函数和资源分配约束的无投影分布式优化
- DOI:
10.1109/tcns.2020.3027787 - 发表时间:
2020-09 - 期刊:
- 影响因子:4.2
- 作者:
Dewen Li;Ning Li;Frank Lewis - 通讯作者:
Frank Lewis
Frank Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Lewis', 18)}}的其他基金
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1839804 - 财政年份:2018
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Innovation in the Design of Improved Actinide Selective Extractants Suitable for use in Large Scale Spent Nuclear Fuel Reprocessing
适用于大规模乏核燃料后处理的改进锕系元素选择性萃取剂的设计创新
- 批准号:
EP/P004873/1 - 财政年份:2017
- 资助金额:
$ 27.27万 - 项目类别:
Research Grant
New Adaptive Dynamic Programming Structures From Neurocognitive Psychology and Graphical Games
来自神经认知心理学和图形游戏的新自适应动态编程结构
- 批准号:
1405173 - 财政年份:2014
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Adaptive Dynamic Programming for Continuous-Time Systems and Networked Agents on Graphs
连续时间系统和图上网络代理的自适应动态规划
- 批准号:
0801330 - 财政年份:2008
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Adaptive Critics for Nonlinear Continuous-Time Systems
非线性连续时间系统的自适应批评
- 批准号:
0501451 - 财政年份:2005
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
GOALI: MEMS Based Sensors and Actuators for Medical and Biological Applications
GOALI:用于医疗和生物应用的基于 MEMS 的传感器和执行器
- 批准号:
0201773 - 财政年份:2002
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Nonlinear Network Structures for Dynamic System Control
动态系统控制的非线性网络结构
- 批准号:
0140490 - 财政年份:2002
- 资助金额:
$ 27.27万 - 项目类别:
Continuing Grant
NSF/CONACyT: Bi-National Effort on Distributed Manufacturing Supervisory Control Systems
NSF/CONACyT:两国在分布式制造监控系统方面的努力
- 批准号:
0219195 - 财政年份:2002
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Acquisition of MRI Equipment for Next Generation Supervisory and Real-Time Controller for Reconfigurable Manufacturing Workcells
采购用于可重构制造工作单元的下一代监控和实时控制器的 MRI 设备
- 批准号:
9724497 - 财政年份:1997
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Neural Networks for Control of Nonlinear Dynamical Systems and Manufacturing Processes
用于控制非线性动力系统和制造过程的神经网络
- 批准号:
9521673 - 财政年份:1995
- 资助金额:
$ 27.27万 - 项目类别:
Continuing Grant
相似国自然基金
可编程网络中基于Sketch的通用和动态网络测量技术研究
- 批准号:62302410
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可见光波段高帧率可编程的超表面动态全息显示研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可编程弹性体的宽频吸波动态可调机制及多场景应用研究
- 批准号:52273247
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
基于动态共价键的可编程蓝相液晶弹性体的设计制备及性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可动态编程复现目标时变形状的柔性结构
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
An Adaptive Robust Dynamic Programming Approach for Decision Making under Model Uncertainty
模型不确定性下决策的自适应鲁棒动态规划方法
- 批准号:
2440945 - 财政年份:2020
- 资助金额:
$ 27.27万 - 项目类别:
Studentship
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917276 - 财政年份:2019
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917275 - 财政年份:2019
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1947419 - 财政年份:2019
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
RII Track-4: A Reflective Learning and Association Control Framework based on Adaptive Dynamic Programming: Architecture and Applications in Robotics
RII Track-4:基于自适应动态规划的反思性学习和关联控制框架:机器人技术的架构和应用
- 批准号:
1833005 - 财政年份:2018
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant