Adaptive Dynamic Programming for Real-Time Cooperative Multi-Player Games and Graphical Games
实时协作多人游戏和图形游戏的自适应动态规划
基本信息
- 批准号:1128050
- 负责人:
- 金额:$ 27.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Objective of this research is to design new algorithms for decision and control in multi-player games for complex human-engineered systems interacting on communication graph topologies. Standard differential game solutions are for systems with a single dynamics and multiple action inputs. However, realistic systems are composed of agents having their own individual dynamics and only interacting with their immediate neighbors in a social graph topology. The Approach is to bring together discoveries in neurobiological learning, sociobiological systems having local interactions between agents, and multi-player differential games to develop novel feedback control structures for nonlinear dynamical systems. Intellectual Merit. Standard differential game theory solutions are generally offline design methods that rely on solving nonlinear design equations requiring knowledge of full system dynamics. Approximate Dynamic Programming techniques based on reinforcement learning will be used to develop novel adaptive control structures that learn game theory solutions online in real time using data measured along the system trajectories and without knowing full system dynamics. Solutions for different definitions of game equilibria will be sought including Nash, Pareto, Nash bargaining, and cooperative games.Broader Impacts. The research will help bridge the gap between the Computational Intelligence and the Control Systems communities by bringing together reinforcement learning, game theory, and differential dynamical systems. Applications will be made to cooperative control of distributed electric power microgrids for renewable energy such as wind and solar generation. Existing programs at UTA will be expanded in women in engineering, research for US students, high school engineering technology, and K-12 outreach.
这项研究的目的是设计新的算法,以在多游戏游戏中为复杂的人工工程系统进行决策和控制,并在通信图形拓扑上进行交互。 标准差异游戏解决方案适用于具有单个动态和多个动作输入的系统。 但是,现实的系统由具有自己的个人动态的代理组成,并且仅在社交图形拓扑中与直接邻居进行互动。 这种方法是汇集神经生物学学习的发现,具有代理之间局部相互作用的社会生物学系统和多玩家差异游戏,以开发非线性动力学系统的新型反馈控制结构。 智力优点。 标准差异游戏理论解决方案通常是离线设计方法,依赖于求解需要了解完整系统动态知识的非线性设计方程。基于强化学习的近似动态编程技术将用于开发新型的自适应控制结构,这些结构使用沿系统轨迹测量的数据实时在线学习游戏理论解决方案,而不知道完整的系统动态。 将寻求针对游戏平衡定义的解决方案,包括纳什,帕累托,纳什议价和合作游戏。 这项研究将通过将强化学习,游戏理论和差异动态系统汇总在一起,有助于弥合计算智能与控制系统社区之间的差距。 将对可再生能源(例如风能和太阳能生成)的分布式电力微电网进行合作控制。 UTA的现有计划将在工程女性,美国学生的研究,高中工程技术和K-12外展方面进行扩展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Lewis其他文献
On the Development of Matrixc, a Discrete Event Controller Supervisor: Implementation of a Fuzzy Logic Dispatching Approach
- DOI:
10.1016/s1474-6670(17)30554-2 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:
- 作者:
Jose Mireles;Gabriel Bravo;Frank Lewis;Raul Campos;Antonio Ramirez - 通讯作者:
Antonio Ramirez
An unusual ring injury
- DOI:
10.1016/s0363-5023(77)80093-2 - 发表时间:
1977-03-01 - 期刊:
- 影响因子:
- 作者:
Douglas A. Drake;Frank Lewis;William L. Newmeyer;Eugene S. Kilgore - 通讯作者:
Eugene S. Kilgore
Projection-Free Distributed Optimization With Nonconvex Local Objective Functions and Resource Allocation Constraint
具有非凸局部目标函数和资源分配约束的无投影分布式优化
- DOI:
10.1109/tcns.2020.3027787 - 发表时间:
2020-09 - 期刊:
- 影响因子:4.2
- 作者:
Dewen Li;Ning Li;Frank Lewis - 通讯作者:
Frank Lewis
Rehospitalization During Post-Hospital Neurorehabilitation Programs Across The United States
- DOI:
10.1016/j.apmr.2020.09.336 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Gordon Horn;Frank Lewis;La'Darius Belcher;Lucille Hapenny - 通讯作者:
Lucille Hapenny
Residential Rehabilitation: Return on Investment One Year After Discharge
- DOI:
10.1016/j.apmr.2022.12.145 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:
- 作者:
Gordon Horn;Frank Lewis - 通讯作者:
Frank Lewis
Frank Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Lewis', 18)}}的其他基金
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1839804 - 财政年份:2018
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Innovation in the Design of Improved Actinide Selective Extractants Suitable for use in Large Scale Spent Nuclear Fuel Reprocessing
适用于大规模乏核燃料后处理的改进锕系元素选择性萃取剂的设计创新
- 批准号:
EP/P004873/1 - 财政年份:2017
- 资助金额:
$ 27.27万 - 项目类别:
Research Grant
New Adaptive Dynamic Programming Structures From Neurocognitive Psychology and Graphical Games
来自神经认知心理学和图形游戏的新自适应动态编程结构
- 批准号:
1405173 - 财政年份:2014
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Adaptive Dynamic Programming for Continuous-Time Systems and Networked Agents on Graphs
连续时间系统和图上网络代理的自适应动态规划
- 批准号:
0801330 - 财政年份:2008
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Adaptive Critics for Nonlinear Continuous-Time Systems
非线性连续时间系统的自适应批评
- 批准号:
0501451 - 财政年份:2005
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
GOALI: MEMS Based Sensors and Actuators for Medical and Biological Applications
GOALI:用于医疗和生物应用的基于 MEMS 的传感器和执行器
- 批准号:
0201773 - 财政年份:2002
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Nonlinear Network Structures for Dynamic System Control
动态系统控制的非线性网络结构
- 批准号:
0140490 - 财政年份:2002
- 资助金额:
$ 27.27万 - 项目类别:
Continuing Grant
NSF/CONACyT: Bi-National Effort on Distributed Manufacturing Supervisory Control Systems
NSF/CONACyT:两国在分布式制造监控系统方面的努力
- 批准号:
0219195 - 财政年份:2002
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Acquisition of MRI Equipment for Next Generation Supervisory and Real-Time Controller for Reconfigurable Manufacturing Workcells
采购用于可重构制造工作单元的下一代监控和实时控制器的 MRI 设备
- 批准号:
9724497 - 财政年份:1997
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Neural Networks for Control of Nonlinear Dynamical Systems and Manufacturing Processes
用于控制非线性动力系统和制造过程的神经网络
- 批准号:
9521673 - 财政年份:1995
- 资助金额:
$ 27.27万 - 项目类别:
Continuing Grant
相似国自然基金
可编程网络中基于Sketch的通用和动态网络测量技术研究
- 批准号:62302410
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态共价键的可编程蓝相液晶弹性体的设计制备及性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态共价键的可编程蓝相液晶弹性体的设计制备及性能研究
- 批准号:52203143
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于基因动态调控网络与模型构建研究三阴性乳腺癌耐药的重编程机制
- 批准号:32200513
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
可动态编程复现目标时变形状的柔性结构
- 批准号:12272352
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
相似海外基金
An Adaptive Robust Dynamic Programming Approach for Decision Making under Model Uncertainty
模型不确定性下决策的自适应鲁棒动态规划方法
- 批准号:
2440945 - 财政年份:2020
- 资助金额:
$ 27.27万 - 项目类别:
Studentship
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917276 - 财政年份:2019
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917275 - 财政年份:2019
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1947419 - 财政年份:2019
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant
RII Track-4: A Reflective Learning and Association Control Framework based on Adaptive Dynamic Programming: Architecture and Applications in Robotics
RII Track-4:基于自适应动态规划的反思性学习和关联控制框架:机器人技术的架构和应用
- 批准号:
1833005 - 财政年份:2018
- 资助金额:
$ 27.27万 - 项目类别:
Standard Grant