Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment

协作研究:复杂环境下自主分层自适应动态规划决策

基本信息

  • 批准号:
    1947419
  • 负责人:
  • 金额:
    $ 23.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The recent big wave of artificial intelligence (AI) not only provided tremendous advancements ranging from fundamental research to a wide range of exciting applications, but also presents enormous amounts of opportunities as well as challenges to the community. Among many of the AI techniques, adaptive dynamic programming and reinforcement learning (ADP/RL) is widely considered as one of the key methodologies for learning-based intelligent decision-making process. The objective of this project is to develop an innovative autonomous hierarchical ADP/RL approach for decision making in complex environments. By autonomously providing a hierarchical representation of sub-goals for improved learning and exploration capability, the proposed research provides a new approach to systematically and adaptively develop an optimal multi-step hierarchical temporal abstraction sequence, rather than the one-step primitive action in traditional methods. The research method advances the foundations, principles, architectures, and algorithms for autonomous learning and hierarchical control, which will facilitate the capability of learning and generalization for decision-making. This project provides unique opportunities to attract and educate future professionals by bridging the connections of ADP/RL and energy systems, and for students to work on cutting-edge problems. The team consists of two PIs with strong collaborations and complementary expertise in computational intelligence, machine learning, autonomous control, and the smart grid. This research advances the scientific foundations and methodologies of intelligent decision making in complex environments with high-dimensionality, big data, and uncertainty. The collaborations with industry integrates fundamental research into a microgrid application providing critical technical innovations to the energy sector. In addition, the developed ADP/RL based intelligent decision making method can benefit other types of complex engineering systems. Furthermore, the research results of this project are also expected to fulfill a critical need in the community by training and preparing future workforce in the cross-disciplinary areas of machine learning and energy systems. The integrative outreach and education activities will provide unique opportunities to attract women and minorities into the intelligent system and smart grid field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的大浪潮人工智能(AI)不仅提供了巨大的进步,从基本研究到广泛的令人兴奋的应用程序,而且还带来了大量的机会以及对社区的挑战。在许多AI技术中,自适应动态编程和增强学习(ADP/RL)被广泛认为是基于学习的智能决策过程的关键方法之一。该项目的目的是为复杂环境中的决策开发一种创新的自主层次ADP/RL方法。通过自主为提高学习和探索能力提供子目标的层次结构表示,拟议的研究为系统和适应性地开发了一种最佳的多步分层时间抽象序列提供了一种新的方法,而不是在传统方法中的单步操作。该研究方法推动了自主学习和分层控制的基础,原理,架构和算法,这将促进学习和概括决策的能力。该项目通过桥接ADP/RL和能源系统的联系,以及让学生解决尖端问题,为吸引和教育未来的专业人员提供了独特的机会。该团队由两个PI组成,这些PI在计算智能,机器学习,自主控制和智能电网方面具有强大的合作和互补的专业知识。这项研究推动了在具有高维,大数据和不确定性的复杂环境中智能决策的科学基础和方法论。与行业的合作将基本研究集成到微电网应用中,为能源部门提供了重要的技术创新。此外,开发的基于ADP/RL的智能决策方法可以使其他类型的复杂工程系统受益。此外,该项目的研究结果还有望通过培训和准备机器学习和能源系统跨学科领域的未来劳动力来满足社区的关键需求。综合外展和教育活动将为吸引妇女和少数民族进入智能系统和智能电网领域提供独特的机会。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Intelligent and Secure Control Approach for Nonlinear Systems under Attacks
受攻击的非线性系统的智能安全控制方法
Semicentralized Deep Deterministic Policy Gradient in Cooperative StarCraft Games
Event-triggered Multi-agent Optimal Regulation Using Adaptive Dynamic Programming
Kernelized Deep Learning for Matrix Factorization Recommendation System Using Explicit and Implicit Information
Multi-Virtual-Agent Reinforcement Learning for a Stochastic Predator-Prey Grid Environment
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangnan Zhong其他文献

Fuzzy-Based Goal Representation Adaptive Dynamic Programming
基于模糊的目标表示自适应动态规划
  • DOI:
    10.1109/tfuzz.2015.2505327
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yufei Tang;Haibo He;Zhen Ni;Xiangnan Zhong;Dongbin Zhao;Xin Xu
  • 通讯作者:
    Xin Xu
Adaptive Dynamic Programming for Robust Regulation and Its Application to Power Systems
鲁棒调节的自适应动态规划及其在电力系统中的应用
Comparative studies of power grid security with network connectivity and power flow information using unsupervised learning
使用无监督学习的网络连接和潮流信息的电网安全比较研究
On-Line Adaptive Dynamic Programming for Feedback Control
  • DOI:
    10.23860/diss-zhong-xiangnan-2017
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangnan Zhong
  • 通讯作者:
    Xiangnan Zhong

Xiangnan Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangnan Zhong', 18)}}的其他基金

CAREER: A Skill-Driven Cooperative Learning Framework for Cyber-Physical Autonomy
职业:技能驱动的网络物理自主合作学习框架
  • 批准号:
    2047010
  • 财政年份:
    2021
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Continuing Grant
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
  • 批准号:
    1850240
  • 财政年份:
    2019
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Standard Grant
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
  • 批准号:
    1947418
  • 财政年份:
    2019
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
  • 批准号:
    1917276
  • 财政年份:
    2019
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Standard Grant

相似国自然基金

面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
    62203006
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
非结构环境下异构多机器人自主智能协作方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
非结构环境下异构多机器人自主智能协作方法研究
  • 批准号:
    62173314
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312835
  • 财政年份:
    2023
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321531
  • 财政年份:
    2023
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Data-Driven Microreaction Engineering by Autonomous Robotic Experimentation in Flow
协作研究:通过自主机器人实验进行数据驱动的微反应工程
  • 批准号:
    2208489
  • 财政年份:
    2023
  • 资助金额:
    $ 23.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了