Collaborative Research: Regulation of Cellular Mechanics by Crosslinked Actin Networks - Role of Palladin and Alpha-actinin

合作研究:交联肌动蛋白网络调节细胞力学 - Palladin 和 α-肌动蛋白的作用

基本信息

  • 批准号:
    1121710
  • 负责人:
  • 金额:
    $ 38.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-11-01 至 2014-10-31
  • 项目状态:
    已结题

项目摘要

Intellectual MeritCells in the body have a remarkable ability to sense "stiffness" in their environment - that is, a cell can distinguish between a hard substrate such as bone, and a softer substrate such as brain. This ability is critical for many aspects of cell function such as migration, wound healing and the proper formation of tissues and organs. In order to sense the mechanical properties of their environment, cells adjust their internal stiffness to match that of the external surface by reorganizing their internal cytoskeleton, which is made of a dynamic network of microscopic filaments. The main component of these filaments is a protein called actin. Various actin-binding proteins crosslink the actin filaments and organize them into multifilament bundles. Palladin is a newly identified actin cross-linking protein that is important in organizing these filament networks. Previous experiments have shown that palladin plays an essential role in embryonic development: when the palladin gene is silenced in mice, it results in lethal development defects that are characterized by a failure of cells to adhere properly to a substrate and to migrate appropriately. These deficits may arise because the cell's ability to adjust its internal stiffness is compromised in the absence of palladin. This proposal will test the hypothesis that palladin, by its ability to cross-link actin and its interaction with another actin cross-linker, alpha-actinin, determines the structure and mechanical properties of actin networks and enables the cell to sense its physical environment. Two types of approaches will be used to address this question. First, the structural and mechanical properties of actin networks assembled on a glass slide will be measured to elucidate how actin cross-linking by palladin contributes to actin organization. In addition, palladin levels will be genetically manipulated in living cells to study how altered actin organization, cellular stiffness and force generation impacts cellular mechano-sensitivity.Broader ImpactThis collaborative proposal will enhance the understanding of essential biological processes that underlie cell movement and tissue formation. The training of graduate and undergraduate students in interdisciplinary approaches from Physics and Cell Biology will be an integral part of the work. The cell lines that will be developed as part of this project will be made freely available to other investigators following their publication. A graduate course in Cell Mechanics will be developed based on the conceptual framework of this proposal. The PI and co-PI will also encourage minority students as well as high school students from the area to participate in research as part of the Louis Stokes Alliance for Minority Participation program at the University of Maryland and the University of North Carolina Research Apprenticeship Program. The PI will organize a one week biophysics laboratory demonstration as part of the Summer Girls Program in the Department of Physics to encourage participation of female students in science and technology fields.
体内的智力成绩具有显着的能力,可以在其环境中感知“刚度”,也就是说,一个细胞可以区分诸如骨骼之类的硬基质和较软的底物(如大脑)。这种能力对于细胞功能的许多方面至关重要,例如迁移,伤口愈合以及组织和器官的正确形成。为了感觉到环境的机械性能,细胞通过重组其内部细胞骨架来调整其内部刚度以匹配外表面的刚度,该骨骼由微观细丝的动态网络组成。这些丝的主要成分是一种称为肌动蛋白的蛋白质。 各种肌动蛋白结合蛋白交联肌动蛋白丝,并将它们组织成多丝束。 Palladin是一种新鉴定的肌动蛋白交联蛋白,在组织这些细丝网络中很重要。先前的实验表明,palladin在胚胎发育中起着至关重要的作用:当小鼠中palladin基因沉默时,它会导致致命的发育缺陷,其特征是细胞未能正确地粘附在底物和适当地迁移。这些缺陷可能会出现,因为在没有palladin的情况下,细胞调节其内部刚度的能力会受到损害。该建议将检验以下假设:Palladin通过其交联肌动蛋白的能力及其与另一种肌动蛋白交联的α-肌动蛋白的相互作用来确定肌动蛋白网络的结构和机械性能,并使细胞感知其物理环境。将使用两种类型的方法来解决这个问题。 首先,将测量聚集在载玻片上的肌动蛋白网络的结构和机械性能,以阐明帕拉丁蛋白的肌动蛋白交联是如何对肌动蛋白组织贡献的。此外,Palladin水平将在活细胞中进行遗传操纵,以研究肌动蛋白组织的改变,细胞僵硬和力产生如何影响细胞机械敏感性。Broader影响这一协作性建议将增强对基本生物学过程的理解,这些生物学过程是细胞运动和组织形成的基本生物学过程。培训研究生和本科生在物理和细胞生物学的跨学科方法中的培训将是工作中不可或缺的一部分。将作为该项目的一部分开发的细胞系将在其他调查人员出版后免费使用。将根据该提案的概念框架开发细胞力学的研究生课程。 PI和CO-PI还将鼓励该地区的少数民族学生以及该地区的高中生参加研究,这是马里兰大学和北卡罗来纳大学研究学徒计划的路易斯·斯托克斯少数族裔参与计划的一部分。 PI将组织为期一周的生物物理实验室演示,作为物理学系夏季女孩计划的一部分,以鼓励女学生参与科学和技术领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arpita Upadhyaya其他文献

Mechanical regulation of cytoskeletal dynamics and function in cytotoxic T lymphocytes
  • DOI:
    10.1016/j.bpj.2023.11.882
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Aashli Pathni;Vishavdeep Vashisht;Lei Li;Neha Narayan;Zhengguo Xiao;Arpita Upadhyaya
  • 通讯作者:
    Arpita Upadhyaya
Structure and Mechanical Properties of Actin Networks Crosslinked with Mutually Interacting Crosslinkers
  • DOI:
    10.1016/j.bpj.2010.12.3428
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Brian Grooman;Ikoku Fujiwara;Carol Otey;Arpita Upadhyaya
  • 通讯作者:
    Arpita Upadhyaya
Cytoskeletal Dynamics and Mechanosensing in Immune Cells
  • DOI:
    10.1016/j.bpj.2020.11.904
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Arpita Upadhyaya
  • 通讯作者:
    Arpita Upadhyaya
Spreading Dynamics and Oscillatory Membrane Behavior of B Lymphocytes
  • DOI:
    10.1016/j.bpj.2010.12.1872
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Christina Ketchum;Chaohong Liu;Wenxia Song;Arpita Upadhyaya
  • 通讯作者:
    Arpita Upadhyaya
Rapid Treadmilling and Myosin Motors Synergistically Induce Formation of Ring-Like Actomyosin Architectures and Cortexes
  • DOI:
    10.1016/j.bpj.2018.11.1371
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Qin Ni;Arpita Upadhyaya;Garegin A. Papoian
  • 通讯作者:
    Garegin A. Papoian

Arpita Upadhyaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arpita Upadhyaya', 18)}}的其他基金

Collaborative Research: Using the Physics of Living Systems Student Research Network to Transmit Techniques and Train Talent
合作研究:利用生命系统物理学学生研究网络传播技术和培养人才
  • 批准号:
    2310742
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Transitions: Mechanical Regulation of Transcription Factor Dynamics, Chromatin Accessibility and Gene Expression
转变:转录因子动力学、染色质可及性和基因表达的机械调节
  • 批准号:
    2132922
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Investigating How Active Fluctuations Drive Immune Receptor Dynamics and Signaling
研究主动波动如何驱动免疫受体动态和信号传导
  • 批准号:
    1915534
  • 财政年份:
    2020
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Formation of a High Flux Student Research Network (HF-SRN) as a Laboratory for Enhancing Interaction in the PoLS SRN
合作研究:建立高通量学生研究网络(HF-SRN)作为增强 PoLS SRN 互动的实验室
  • 批准号:
    1806903
  • 财政年份:
    2018
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Mechanisms of Immune Cell Response to Mechanical Load
免疫细胞对机械负荷的反应机制
  • 批准号:
    1563355
  • 财政年份:
    2016
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Physics of Centrosome Reorientation during Signaling Activation in Immune Cells
免疫细胞信号激活过程中中心体重新定向的物理学
  • 批准号:
    1607645
  • 财政年份:
    2016
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Physical Aspects of Lymphocyte Activation
淋巴细胞激活的物理方面
  • 批准号:
    1206060
  • 财政年份:
    2012
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
  • 批准号:
    82371634
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
  • 批准号:
    82370798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
  • 批准号:
    2336907
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
  • 批准号:
    2336906
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Exploring the Collaborative Cross resource to identify different phenotypes of Lyme neuroborreliosis and disease-contributing genetic factors
探索协作交叉资源以确定莱姆神经疏螺旋体病的不同表型和疾病致病遗传因素
  • 批准号:
    10666026
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了