SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response

SoCS:协作研究:社交媒体增强应急响应中的组织意识

基本信息

  • 批准号:
    1111182
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative research leverages expertise of researchers at Wright State University (IIS-1111182) and Ohio State University (IIS-1111118). Online social networks and always-connected mobile devices have created an immense opportunity that empowers citizens and organizations to communicate and coordinate effectively in the wake of critical events. Specifically, there have been many isolated examples of using Twitter to provide timely and situational information about emergencies to relief organizations, and to conduct ad-hoc coordination. However, there are few attempts that try to understand the full ramifications of using social networks in a more concerted manner for effective organizational sensemaking. This project aims to conduct multidisciplinary research involving computer and social scientists fill this gap.This project seeks to leverage Twitter posts (tweets) as the primary source of citizen inputs and couple relevant content and network information along with microworld simulations involving human role players to measure effectiveness of various organized sensemaking strategies. To arrive at meaningful summaries of citizen input, tweet content is analyzed using a semantic content analysis by combining natural language techniques that are suitably fused with existing knowledge bases (GeoNames, Wikipedia). Content analysis is further enhanced by innovatively combining it with the dynamic analysis of the twitter network to realize concise and trustworthy information nuggets of potential interest to organizations and citizens. The resulting summaries will be fed to a suitably designed microworld simulation involving human actors to derive realistic settings for modeling disaster situations and typical organizational structures.This project is expected to have a significant impact in the specific context of disaster and emergency response. However, elements of this research are expected to have much wider utility, for example in the domains of e-commerce, and social reform. From a computational perspective, this project introduces the novel paradigm of people-content-network analysis whose application is not just limited to organized sensemaking. For social scientists, it provides a platform that can be used to assess relative efficacy of various organizational structures using microworld simulations and is expected to provide new insights into the types of social network structures (mix of symmetric and asymmetric) that might be better suitable to propagate information in emergent situations. From an educational standpoint, the majority of funds will be used to train the next generation of interdisciplinary researchers drawn from the computational and social sciences. Research activities will also be integrated with graduate course work. Participation of underrepresented groups will be encouraged. Datasets and software developed as part of this project will be made available to the broader research community via the project page (http://knoesis.org/research/semspc/projects/socs).
这项合作研究利用了赖特州立大学 (IIS-1111182) 和俄亥俄州立大学 (IIS-1111118) 研究人员的专业知识。在线社交网络和始终连接的移动设备创造了巨大的机会,使公民和组织能够在重大事件发生后有效地进行沟通和协调。 具体来说,有许多利用 Twitter 向救援组织提供及时的紧急情况信息并进行临时协调的孤立例子。然而,很少有尝试尝试了解以更协调的方式使用社交网络以实现有效的组织意义建构的全部后果。 该项目旨在开展涉及计算机和社会科学家的多学科研究,填补这一空白。该项目旨在利用 Twitter 帖子(推文)作为公民输入的主要来源,并将相关内容和网络信息与涉及人类角色扮演者的微观世界模拟结合起来,以衡量各种有组织的意义建构策略的有效性。 为了获得公民输入的有意义的摘要,通过结合与现有知识库(GeoNames、维基百科)适当融合的自然语言技术,使用语义内容分析来分析推文内容。通过创新地将内容分析与 Twitter 网络的动态分析相结合,进一步增强内容分析,以实现组织和公民潜在兴趣的简洁且可信的信息块。由此产生的摘要将被输入到一个涉及人类参与者的适当设计的微观世界模拟中,以获得用于模拟灾难情况和典型组织结构的真实设置。该项目预计将在灾难和应急响应的特定背景下产生重大影响。然而,这项研究的内容预计将具有更广泛的用途,例如在电子商务和社会改革领域。 从计算的角度来看,该项目引入了人-内容-网络分析的新范式,其应用不仅限于有组织的意义建构。 对于社会科学家来说,它提供了一个平台,可用于使用微观世界模拟来评估各种组织结构的相对功效,并有望为可能更适合的社交网络结构类型(对称和不对称的混合)提供新的见解。在紧急情况下传播信息。 从教育的角度来看,大部分资金将用于培训来自计算和社会科学的下一代跨学科研究人员。 研究活动也将与研究生课程工作相结合。将鼓励代表性不足的群体参与。作为该项目一部分开发的数据集和软件将通过项目页面 (http://knoesis.org/research/semspc/projects/socs) 提供给更广泛的研究界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amit Sheth其他文献

Causal Event Graph-Guided Language-based Spatiotemporal Question Answering
因果事件图引导的基于语言的时空问答
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaushik Roy;Alessandro Oltramari;Yuxin Zi;Chathurangi Shyalika;Vignesh Narayanan;Amit Sheth
  • 通讯作者:
    Amit Sheth
The EMPWR Platform: Data and Knowledge-Driven Processes for the Knowledge Graph Lifecycle
EMPWR 平台:知识图生命周期的数据和知识驱动流程
  • DOI:
    10.1109/mic.2023.3339858
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    H. Y. Yip;Amit Sheth;Amit Sheth
  • 通讯作者:
    Amit Sheth
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
  • DOI:
    10.1109/mis.2024.3366669
  • 发表时间:
    2024-02-19
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth
  • 通讯作者:
    Amit Sheth
On the Prospects of Incorporating Large Language Models (LLMs) in Automated Planning and Scheduling (APS)
关于将大型语言模型(LLM)纳入自动规划和调度(APS)的前景
  • DOI:
    10.48550/arxiv.2401.02500
  • 发表时间:
    2024-01-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vishal Pallagani;Kaushik Roy;Bharath Muppasani;F. Fabiano;Andrea Loreggia;K. Murugesan;Biplav Srivastava;F. Rossi;L. Horesh;Amit Sheth
  • 通讯作者:
    Amit Sheth
GEAR-Up: Generative AI and External Knowledge-based Retrieval Upgrading Scholarly Article Searches for Systematic Reviews
GEAR-Up:生成式人工智能和基于外部知识的检索升级学术文章搜索以获取系统评论
  • DOI:
    10.48550/arxiv.2312.09948
  • 发表时间:
    2023-12-15
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Kaushik Roy;Vedant Khandelwal;Harshul Surana;Valerie Vera;Amit Sheth;Heather Heckman
  • 通讯作者:
    Heather Heckman

Amit Sheth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amit Sheth', 18)}}的其他基金

EAGER: Knowledge-guided neurosymbolic AI with guardrails for safe virtual health assistants
EAGER:知识引导的神经符号人工智能,带有安全虚拟健康助手的护栏
  • 批准号:
    2335967
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
EAGER: Advancing Neuro-symbolic AI with Deep Knowledge-infused Learning
EAGER:通过深度知识注入学习推进神经符号人工智能
  • 批准号:
    2133842
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator: Symposium on Big Data and AI-Driven Disaster Management for Planning, Response, Recovery, and Resiliency
NSF 融合加速器:大数据和人工智能驱动的灾害管理规划、响应、恢复和复原力研讨会
  • 批准号:
    1956285
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
  • 批准号:
    1956009
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
  • 批准号:
    2013801
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
  • 批准号:
    1761931
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
III: Travel Fellowships for Students from U.S. Universities to Attend ISWC 2016
三:美国大学学生参加 ISWC 2016 的旅费奖学金
  • 批准号:
    1622628
  • 财政年份:
    2016
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Market Driven Innovations and Scaling up of Twitris- A System for Collective Social Intelligence
PFI:AIR - TT:市场驱动的创新和 Twitris 的扩展——集体社交智能系统
  • 批准号:
    1542911
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
  • 批准号:
    1513721
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
I-Corps: Towards Commercialization of Twitris- a system for collective intelligence
I-Corps:迈向 Twitris 的商业化——集体智慧系统
  • 批准号:
    1343041
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CSR: Small: Collaborative Research: Dynamic Reconfiguration for Adaptive Computing in Heterogeneous SoCs
CSR:小型:协作研究:异构 SoC 中自适应计算的动态重新配置
  • 批准号:
    1526687
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Data-Driven, Computational Models for Discovery and Analysis of Framing
SoCS:协作研究:用于发现和分析框架的数据驱动计算模型
  • 批准号:
    1551192
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Dynamic Reconfiguration for Adaptive Computing in Heterogeneous SoCs
CSR:小型:协作研究:异构 SoC 中自适应计算的动态重新配置
  • 批准号:
    1526562
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Focusing Attention to Improve the Performance of Citizen Science Systems: Beautiful Images and Perceptive Observers
SoCS:协作研究:集中注意力提高公民科学系统的性能:美丽的图像和敏锐的观察者
  • 批准号:
    1211094
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Strategies for Crowdsourcing Complex Design Work
SoCS:协作研究:众包复杂设计工作的策略
  • 批准号:
    1208382
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了