SHF: Small: Collaborative Research: A Novel Method for the Performance Analysis of VLSI Circuits with Severe Parameter Value Variations due to Nano-scale Process
SHF:小型:协作研究:一种用于纳米级工艺导致参数值变化严重的 VLSI 电路性能分析的新方法
基本信息
- 批准号:1115564
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The advance of VLSI technology has reached to 32nm feature size and below. For such a nano-scale process, lithography no longer produces the ideal shape/dimension of circuit components in a silicon wafer, and the corresponding electrical parameters may vary as large as 1/3 or more. A major concern in VLSI design is how to evaluate the circuits/systems performance made in such nano-scale process. In the other words, we want to know how much the performance specs will change due to variation in circuit parameters from their nominal values caused by the process uncertainties. The current research on performance robustness analysis is developed mainly along the line of the Monte-Carlo sampling method, or stochastic and statistical analysis methods. They all require a high level of computation complexity to achieve the required accuracy and one would like to avoid the evaluation of large number of samples to validate the performance range of a VLSI circuit/system? In this research the PIs propose a novel method for VLSI circuit performance robustness analysis which does not require evaluation of large numbers of samples. Instead, it computes only a few critical polynomials in frequency domain, or critical systems in time domain. It is a fundamentally new way to analyze VLSI circuit performance robustness. The consequent leap of computation efficiency would make nano-scale VLSI circuit design and its performance robustness analysis practically possible. The objectives of this project are: (i) to develop a solid theoretical basis for the performance robustness analysis of VLSI circuits in both frequency and time domains; (ii) to develop an efficient, novel method for computing VLSI circuit performance variation bounds and distribution (due to the process variation) without using the Monte-Carlo method.The broad impact of this project will be its potentially transformative effect on the robust analysis methods for VLSI circuits. This research will be integrated into the graduate education of the Ph.D. students at the two universities involved, and disseminated by publications in journals and presentations at conferences, a workshop and collaboration with industry, and will hopefully contribute to broad thinking across multiple disciplines.
VLSI技术的进步已达到32nm的功能尺寸及以下。对于这种纳米尺度过程,光刻不再产生硅晶片中电路成分的理想形状/尺寸,相应的电参数可能会变化高达1/3或更多。 VLSI设计的主要关注点是如何评估在这种纳米级过程中所做的电路/系统性能。换句话说,我们想知道,由于电路参数与过程不确定性引起的名义值的变化,性能规格将变化多少。当前对性能鲁棒性分析的研究主要沿着蒙特 - 卡洛采样方法或随机和统计分析方法的线路开发。他们都需要高水平的计算复杂性才能达到所需的准确性,并且希望避免评估大量样品以验证VLSI电路/系统的性能范围吗?在这项研究中,PI提出了一种用于VLSI电路性能鲁棒性分析的新方法,该方法不需要评估大量样品。取而代之的是,它仅计算频域中的几个关键多项式,或时间域中的关键系统。这是分析VLSI电路性能鲁棒性的一种新方法。随之而来的计算效率的飞跃将使纳米级VLSI电路设计及其性能鲁棒性分析几乎可以实现。该项目的目标是:(i)为在频率和时域中对VLSI电路的性能鲁棒性分析建立坚实的理论基础; (ii)开发一种用于计算VLSI电路性能变化界限和分布(由于过程变化)的新方法,而无需使用Monte-Carlo方法。该项目的广泛影响将是其对VLSI电路的强大分析方法的潜在变化效应。这项研究将纳入博士学位的研究生教育中。参与的两所大学的学生,并由会议的期刊和演讲中的出版物传播,这是与行业的研讨会和合作,并希望有助于跨多个学科的广泛思维。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng-Guo Wang其他文献
Optimization and Quality Estimation of Circuit Design via Random Region Covering Method
通过随机区域覆盖方法进行电路设计的优化和质量评估
- DOI:
10.1145/3084685 - 发表时间:
2017-08 - 期刊:
- 影响因子:1.4
- 作者:
Zhaori Bi;Sheng-Guo Wang;Xuan Zeng;Dian Zhou - 通讯作者:
Dian Zhou
New Routh-Type Table Method for Stability Test of Polynomials and Their Systems
- DOI:
10.23919/chicc.2019.8866052 - 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
Sheng-Guo Wang - 通讯作者:
Sheng-Guo Wang
Robust active control for uncertain structural systems with acceleration sensors
- DOI:
10.1002/stc.17 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sheng-Guo Wang - 通讯作者:
Sheng-Guo Wang
Sheng-Guo Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng-Guo Wang', 18)}}的其他基金
Planning Visit: U.S. - Japan Research on Effective Fast Robust Control of a Precision Planar Motion Stage for Manufacturing and Instruments
计划访问:美国-日本研究制造和仪器精密平面运动平台的有效快速鲁棒控制
- 批准号:
0940662 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant