AF: Medium: Computational Complexity Theory and Circuit Complexity

AF:中:计算复杂性理论和电路复杂性

基本信息

  • 批准号:
    1064785
  • 负责人:
  • 金额:
    $ 42.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

This award focuses on problems in computational complexity theory, with the goal of clarifying the power and limitations of various important classes of algorithms (known as "complexity classes"). Complexity classes provide the best tools currently available for understanding the computational complexity of real-world computational problems. Part of the award supports a collaboration with researchers at the Czech Academy of Sciences.Kolmogorov complexity measures the amount of "information" in a finite string, and also provides a mathematical definition of what it means for a string to be "random". Although the Kolmogorov complexity of an arbitrary string cannot be computed, there are strong connections between the (non-computable) notion of randomness and questions about the circuit size required to compute various functions. This award will support an investigation into recent indications that computational complexity classes can be characterized in terms of efficient access to the Kolmogorov complexity function, thus possibly opening a new portal for techniques from the theory of computability and algorithmic randomness to be applied in complexity theory. The award will also support an investigation into the limits of computation by arithmetic circuits. (In an arithmetic circuit, data can only be manipulated by arithmetic operations such as addition and multiplication; operations that directly access the individual bits of numeric data are not supported.)The long-term goals of research in computational complexity, if finally achieved, will have profound impact on the society---for instance, by providing firm mathematical underpinnings to public-key cryptography, which currently rests upon many unproven conjectures. This research activity offers concrete plans for incremental progress toward this long-range goal. The award also supports graduate education. As such, it will assist with training new researchers and educators. The research results will be broadly disseminated, not only through journal publication but also through survey articles in various venues.
该奖项重点关注计算复杂性理论中的问题,旨在阐明各种重要算法类别(称为“复杂性类别”)的能力和局限性。 复杂性类提供了当前可用于理解现实世界计算问题的计算复杂性的最佳工具。 该奖项的一部分是支持与捷克科学院研究人员的合作。柯尔莫哥洛夫复杂度衡量有限字符串中的“信息”量,并且还提供了字符串“随机”含义的数学定义。 尽管无法计算任意字符串的柯尔莫哥洛夫复杂度,但(不可计算的)随机性概念与计算各种函数所需的电路大小问题之间存在着密切的联系。 该奖项将支持对最近迹象的调查,即计算复杂性类别可以通过有效访问柯尔莫哥洛夫复杂性函数来表征,从而可能为可计算性和算法随机性理论中的技术应用于复杂性理论打开一个新的门户。 该奖项还将支持对算术电路计算极限的调查。 (在算术电路中,数据只能通过加法和乘法等算术运算来操作;不支持直接访问数值数据各个位的操作。)计算复杂性研究的长期目标,如果最终实现的话,将对社会产生深远的影响——例如,为公钥密码学提供坚实的数学基础,而公钥密码学目前依赖于许多未经证实的猜想。 这项研究活动为逐步实现这一长期目标提供了具体计划。 该奖项还支持研究生教育。 因此,它将有助于培训新的研究人员和教育工作者。 研究结果将被广泛传播,不仅通过期刊出版,而且通过在不同场所发表调查文章。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Minimum Oracle Circuit Size Problem
最小预言机电路尺寸问题
  • DOI:
    10.1007/s00037-016-0124-0
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Eric Allender;D. Holden;Valentine Kabanets
  • 通讯作者:
    Valentine Kabanets
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Allender其他文献

Encyclopaedia of Complexity Results for Finite-Horizon Markov Decision Process Problems
有限视野马尔可夫决策过程问题的复杂性结果百科全书
  • DOI:
  • 发表时间:
    1997-09-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Mundhenk;J. Goldsmith;Christopher Lusena;Eric Allender
  • 通讯作者:
    Eric Allender
NL-printable sets and Nondeterministic Kolmogorov Complexity
NL 可打印集和非确定性柯尔莫哥洛夫复杂度
  • DOI:
    10.1016/s1571-0661(04)80838-7
  • 发表时间:
    2003-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Allender
  • 通讯作者:
    Eric Allender
Uniform derandomization from pathetic lower bounds
从可悲的下限进行统一去随机化
Complexity of Regular Functions
常规函数的复杂性
  • DOI:
    10.1007/978-3-319-15579-1_35
  • 发表时间:
    2015-03-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Allender;Ian Mertz
  • 通讯作者:
    Ian Mertz
New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems
关于电路最小化的(非)难度及相关问题的新见解

Eric Allender的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Allender', 18)}}的其他基金

AF: Small: Algebraic Methods in Codes and Computation
AF:小:代码和计算中的代数方法
  • 批准号:
    1909683
  • 财政年份:
    2019
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
AF: Small: Computational Complexity Theory and Circuit Complexity
AF:小:计算复杂性理论和电路复杂性
  • 批准号:
    1909216
  • 财政年份:
    2019
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
AF: Student Travel to Clay Mathematics Institute Complexity Workshop
AF:学生前往克莱数学研究所复杂性研讨会
  • 批准号:
    1809703
  • 财政年份:
    2018
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics
AF:媒介:协作研究:算法设计和统计物理中的信息压缩
  • 批准号:
    1514164
  • 财政年份:
    2015
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
EAGER: AF: New approaches to hardness for circuit minimization
EAGER:AF:电路最小化硬度的新方法
  • 批准号:
    1555409
  • 财政年份:
    2015
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
Computational Complexity Theory and Circuit Complexity
计算复杂性理论和电路复杂性
  • 批准号:
    0830133
  • 财政年份:
    2008
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Algorithmic Randomness
FRG:协作研究:算法随机性
  • 批准号:
    0652582
  • 财政年份:
    2007
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Continuing Grant
Theory and Practice of Secure Computation
安全计算理论与实践
  • 批准号:
    0728937
  • 财政年份:
    2007
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Continuing Grant
Computational Complexity Theory and Circuit Complexity
计算复杂性理论和电路复杂性
  • 批准号:
    0514155
  • 财政年份:
    2005
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Continuing Grant
Computational Complexity Theory and Circuit Complexity
计算复杂性理论和电路复杂性
  • 批准号:
    0104823
  • 财政年份:
    2001
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1704552
  • 财政年份:
    2017
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1703489
  • 财政年份:
    2017
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
AF: Medium: Quantum Hamiltonian Complexity: Through the Computational Lens
AF:介质:量子哈密顿复杂性:通过计算镜头
  • 批准号:
    1410022
  • 财政年份:
    2014
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Continuing Grant
AF: Medium: New Directions in Computational Complexity
AF:中:计算复杂性的新方向
  • 批准号:
    0964401
  • 财政年份:
    2010
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Approximate Computational Geometry via Controlled Linear Perturbation
AF:媒介:协作研究:通过受控线性扰动近似计算几何
  • 批准号:
    0904832
  • 财政年份:
    2009
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了