Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers

用于质子传导固体氧化物燃料电池和电解槽的增强型电极

基本信息

  • 批准号:
    1101817
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

0967829McIntoshMatching supply with demand is a significant issue with the large-scale deployment of intermittent renewable energy systems such as wind and solar power. For example, the peak power generated when the wind blows must be matched to periods of peak demand. This necessitates the development of large and efficient means of temporary power storage. One attractive option is a high performance, reversible, and efficient fuel cell/electrolyzer system. This system would operate in electrolyzer mode to store electrical energy as chemical energy (hydrogen) during periods of plentiful power generation. Operation can then be reversed to supply electrical energy during periods of peak demand.Intellectual MeritProton conducting oxides have potential application in efficient high temperature solid oxide fuel cells and electrolyzers. While the transport properties of these materials are being studied in increasing detail, there is currently very limited knowledge regarding the catalytic and electrocatalytic activity of this class of material. Reduction and oxidation (redox) of surface oxygen sites by the Mars-van Krevelen mechanism is a central step in catalytic and electrocatalytic reaction on oxygen ion conducting materials. The central hypothesis of the proposed research is that an analogous proton-based Mars-van Krevelen mechanism will be a critical step in the catalytic cycle on proton conducting oxides. The central route to enhanced activity will be doping of transition metals both into the oxide lattice and as nanoparticles on the oxide surface. The hypothesized electrocatalytic mechanism will be validated by isotopic transient studies and the measured reaction kinetics related to proton incorporation thermodynamics, transport properties and crystal structure. Proton conducting solid oxide fuel cells and electrolyzers will be fabricated and tested to demonstrate the links between electrocatalysis and electrode function.The demonstration of a proton based Mars-van Krevelen mechanism will provide a fundamental basis from which the performance of proton conducting oxide electrodes may be interpreted and enhanced.Broader ImpactsReplacing oxygen ion conductors with proton conducting oxides can provide a new direction for heterogeneous catalyst development. The results of this multidisciplinary study will be disseminated to the catalysis, electrochemistry, and solid state ionics communities through journal publications and conference presentations. Undergraduate students will play an active role in this research through clearly identified, focused research projects. The importance and potential impact of ongoing scientific advances in the area of energy and the environment will be conveyed to the general public via "Energy days" to be held at the University of Virginia. Faculty and graduate and undergraduate students from across campus actively engaged in this field will provide technology demonstrations and discussion points. A focused approach to engaging middle school students will be developed by expanding a small existing program. The PI, as well as graduate students in the PI's laboratory, will spend a time at local middle schools introducing the concept of engineering to students through a series of hands-on projects. These will be focused on energy and sustainability concepts with learning outcomes reinforced through classroom education.
0967829 McIntoshMatching随需求的供应是大规模部署间歇性可再生能源系统(例如风能和太阳能)的重要问题。 例如,当风吹动时产生的峰值功率必须与峰值需求的周期相匹配。这需要开发大量有效的临时电源存储方式。一种有吸引力的选择是高性能,可逆和有效的燃料电池/电解室系统。 该系统将以电解仪模式运行,以将电能作为化学能(化学能(氢))存储在大量发电期间。然后可以逆转运行以在需求峰值期间提供电能。智能富特蛋白传导氧化物可能在有效的高温固体氧化物燃料电池和电解剂中潜在地应用。 尽管这些材料的运输特性正在详细研究,但目前关于此类材料的催化和电催化活性的知识非常有限。 Mars-Van Krevelen机制对表面氧的还原和氧化(氧化还原)是氧气导电材料催化和电催化反应的核心步骤。拟议的研究的中心假设是,基于质子的类似质子的火星van krevelen机制将是质子传导氧化物催化循环中的关键步骤。增强活性的中心途径将是将过渡金属掺入氧化物晶格和氧化物表面上的纳米颗粒。假设的电催化机制将通过同位素瞬态研究以及与质子掺入热力学,传输性能和晶体结构相关的测量反应动力学来验证。将制造和测试质子进行固体氧化物燃料电池和电解液,以证明电催化和电极功能之间的联系。基于质子的Mars-van Krevelen机制的演示将提供一个基本的基础,从而提供基本的基础,从而可以将氧化物电极的质子构成氧化物电极的新方向。异质催化剂开发。 这项多学科研究的结果将通过期刊出版物和会议演讲传播到催化,电化学和固态离子学界的催化,电化学和固态离子学界。本科生将通过清晰确定的,重点的研究项目在这项研究中发挥积极作用。正在进行的科学进步在能源和环境领域的重要性和潜在影响将通过在弗吉尼亚大学举行的“能源日”传达给公众。 来自各个校园的教职员工,毕业生和本科生积极参与该领域,将提供技术演示和讨论点。通过扩展一个小型现有计划,将开发一种专注的中学生的方法。 PI以及PI实验室的研究生将在当地中学度过一段时间,通过一系列动手项目向学生介绍工程学的概念。这些将通过课堂教育加强学习成果来关注能源和可持续性概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven McIntosh其他文献

Steven McIntosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven McIntosh', 18)}}的其他基金

Collaborative Research: Electrochemical Production of NH3 Using Proton-Conducting Ceramic Electrolytes
合作研究:利用质子传导陶瓷电解质电化学生产NH3
  • 批准号:
    1803758
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EFRI-PSBR: Continuous Liquid Fuel Production via Scalable Biosynthesis of Enzyme-Quantum Dot Hybrid Photocatalysts
EFRI-PSBR:通过酶-量子点混合光催化剂的可扩展生物合成连续生产液体燃料
  • 批准号:
    1332349
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
  • 批准号:
    1101814
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
  • 批准号:
    0967829
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
  • 批准号:
    0643931
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

质子陶瓷电化学电池三重导电氧电极水解离机制与稳定性提升研究
  • 批准号:
    22309043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中高温PEM水电解膜电极连续质子传输通道构筑机理及性能研究
  • 批准号:
    22379140
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
石墨烯立体多孔薄膜诱导合成非对称结构铂基纳米晶超低铂载量质子交换膜燃料电池电极体系的研究
  • 批准号:
    22379031
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
膜中质子驱动界面成核生长原位制备一体有序化膜电极
  • 批准号:
    22308129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
质子陶瓷电解池电解二氧化碳的燃料极材料设计及电极反应机理研究
  • 批准号:
    52302255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dissecting Neural Circuit Mechanisms Underlying Pallidal Deep Brain Stimulation
剖析苍白球深部脑刺激背后的神经回路机制
  • 批准号:
    10730757
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Ultrafast FLASH radiation therapy dosimetry
超快 FLASH 放射治疗剂量测定
  • 批准号:
    10667940
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Development of binder-free electrodes for novel proton batteries
新型质子电池无粘合剂电极的开发
  • 批准号:
    2863973
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
Proton exchange membrane water electrolysers with thin film nanostructured electrodes
具有薄膜纳米结构电极的质子交换膜水电解槽
  • 批准号:
    2750980
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
Real-time in vivo proton range verification in proton therapy with thallium bromide detectors
使用溴化铊探测器进行质子治疗中的实时体内质子范围验证
  • 批准号:
    10390443
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了