CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
基本信息
- 批准号:1101814
- 负责人:
- 金额:$ 7.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROPOSAL NUMBER.: CBET-0643931PRINCIPAL INVESTIGATOR: McIntosh, StevenINSTITUTION: University of VirginiaCAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon SolidOxide Fuel Cells Intellectual MeritA number of technologies are under development to increase the efficiency of power generation systems. One of the most promising for large scale and distributed systems is the Solid Oxide Fuel Cell (SOFC). SOFCs utilize an oxygen anion conducting electrolyte and may theoretically operate on any combustible fuel supplied to the fuel electrode, the anode. Current SOFC are unnecessarily restricted to hydrogen fuel due to anode materials limitations. The development of SOFC that efficiently convert both traditional and bio-derived hydrocarbon fuels to electrical power would be of great benefit to society. Progress has been made in developing new oxide-based anodes; however, the catalytic properties of these novel materials are note well understood. A high performance anode material must posses both high oxygen ion and electron conductivity and catalytic activity towards fuel oxidation. The overall research goal is to understand the coupled ion transport and catalytic processes occurring in complex oxides and relate these to the material structure and composition.Three distinct approaches will be taken. First, a pulse reactor technique will be utilized to investigate the nature of the active site and reaction mechanism for hydrocarbon oxidation on novel SOFC anode materials. Second, thin film electrodes with well defined structure, composition and geometry will be fabricated and operated as model SOFCs. Combined electrochemical and catalytic measurements on these model systems will investigate the influence of applied potential, film microstructure and ionic flux on the surface reaction rate and mechanism. Finally, lab-scale SOFCs will be fabricated to demonstrate the application of this technology and relate fuel cell performance to the fundamental anode material properties. The work will be supplemented by detailed characterization of the microstructure and composition of the material surface and bulk.Broader ImpactThe proposed research is integrated with an educational component that incorporates energy technology education into the University of Virginia curriculum. A senior level undergraduate course will be developed that explores both technological and societal issues surrounding energy use. This will be supplemented by a new undergraduate laboratory fuel cell experiment. A freshman engineering course will allow students to design and build novel energy-related devices. The students will present their work at university open days to share their ideas and designs with the public. In addition, the graduate chemical reaction engineering class will be revised to include the fundamental concepts behind emerging energy technologies.The development of an efficient direct-hydrocarbon fuel cell will have a significant impact upon energy production in the US. The final research goal of producing a lab-scale fuel cell operating on readily available fuels will provide immediate outreach to the public through a tangible scientific discovery. Understanding coupled transport and catalysis in oxides has broader application in the fields of chemical sensors, dense oxide membranes and the emerging field of nano-ionics.
提案编号:CBET-0643931原理研究者:McIntosh,Stevenininstitution:Viriniacareer大学:下一代直接 - 氢化碳固体燃料电池的新型方法知识型技术正在开发中,以提高发电系统的效率。大规模和分布式系统最有希望的是固体氧化物燃料电池(SOFC)。 SOFC利用电解质的氧阴离子,理论上可以在提供给燃料电极阳极的任何可燃燃料上运行。由于阳极材料的限制,当前的SOFC不必要地限于氢燃料。有效地将传统和生物衍生的碳氢化合物燃料转换为电力的SOFC的开发对社会有很大的好处。 开发新的基于氧化物的阳极方面取得了进展。然而,这些新材料的催化特性值得注意。高性能阳极材料必须具有高氧离子和电子电导率和催化活性对燃料氧化。总体研究目标是了解复杂氧化物中发生的离子运输和催化过程,并将其与材料结构和组成相关联。将采取三种不同的方法。首先,将利用一种脉冲反应器技术研究活性位点的性质和反应机制,用于新型SOFC阳极材料上的烃氧化。其次,将薄膜电极具有明确的结构,组成和几何形状,并作为模型SOFC制造并操作。这些模型系统上的电化学和催化测量的组合将研究应用电位,膜微结构和离子通量对表面反应速率和机制的影响。最后,将制造实验室规模的SOFC来证明该技术的应用,并将燃料电池性能与基本阳极材料属性相关联。这项工作将通过对材料表面和批量的微观结构和组成的详细表征来补充。BoaderImpact拟议的研究与将能源技术教育纳入弗吉尼亚大学课程的教育组成部分集成在一起。将开发一门高级本科课程,探讨围绕能源使用的技术和社会问题。这将通过一个新的本科实验室燃料电池实验来补充。大一新生的工程课程将使学生可以设计和构建与能源相关的新型设备。学生将在大学开放日展示他们的作品,以与公众分享他们的想法和设计。此外,研究生化学反应工程类别将进行修订,以包括新兴能源技术背后的基本概念。有效的直接氢化碳燃料电池的开发将对美国的能源产生产生重大影响。在随时可用的燃料上生产实验室规模的燃料电池的最终研究目标将通过有形的科学发现为公众提供立即向公众提供。 了解氧化物中的耦合转运和催化在化学传感器,致密氧化物膜和纳米离子学的新兴领域的领域中更广泛地应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven McIntosh其他文献
Steven McIntosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven McIntosh', 18)}}的其他基金
Collaborative Research: Electrochemical Production of NH3 Using Proton-Conducting Ceramic Electrolytes
合作研究:利用质子传导陶瓷电解质电化学生产NH3
- 批准号:
1803758 - 财政年份:2018
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
EFRI-PSBR: Continuous Liquid Fuel Production via Scalable Biosynthesis of Enzyme-Quantum Dot Hybrid Photocatalysts
EFRI-PSBR:通过酶-量子点混合光催化剂的可扩展生物合成连续生产液体燃料
- 批准号:
1332349 - 财政年份:2013
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
- 批准号:
1101817 - 财政年份:2010
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
- 批准号:
0967829 - 财政年份:2010
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
- 批准号:
0643931 - 财政年份:2007
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
相似国自然基金
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:32171163
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
- 批准号:
2338752 - 财政年份:2024
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Developing a nonpharmacological pain intervention for community dwelling older adults with dementia
为社区居住的痴呆症老年人开发非药物疼痛干预措施
- 批准号:
10644490 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Development of a digital therapeutic targeting anxiety sensitivity to reduce PTSD-SUD in women presenting for emergency care after sexual assault.
开发一种针对焦虑敏感性的数字疗法,以减少性侵犯后寻求紧急护理的女性的 PTSD-SUD。
- 批准号:
10449766 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别: