Quantum Control of Electron-Hole Wave Packets in Semiconductor Nanostructures with Strong Terahertz Pulses
强太赫兹脉冲对半导体纳米结构中电子空穴波包的量子控制
基本信息
- 批准号:1063632
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****This research addresses a fundamental question of light-matter interactions in condensed matter: How do quantum states in semiconductors evolve in the presence of strong electromagnetic waves? Quantum dynamics of intraband transitions (low-energy excitations of 1-10 meV) in semiconductors are little explored to date; the objective of this project is to establish concrete physical pictures of how the quantum dynamics unfold in a many-electron system. Interacting with electron-hole (e-h) wave packets in semiconductor nanostructures, strong terahertz (THz) pulses induce intraband transitions occurring on a picosecond time scale. Ultrafast optical/THz probe pulses resolve not only the amplitude but also the phase of the quantum states in the time domain so that the quantum dynamics can be completely mapped out. Given that Coulomb interactions govern the quantum dynamics, the time-resolved THz study will provide a novel opportunity to understand Coulomb correlations in the e-h system and decoherence of many-body excitations. As the THz intensity exceeds a certain level, the nature of light-matter interactions will undergo a qualitative transition showing traits of the field-induced motion of electrons and holes. This will set a unique stage to observe the quantum-to-classical transition of light-matter interactions in condensed matter. The outreach programs include optics demonstrations for K-12 students, research experience for high school students, and professional development opportunity for science and math teachers.****Nontechnical Abstract****Terahertz (THz) waves are electromagnetic waves whose frequencies lie between the microwave and infrared regions. Naturally occurring THz radiation fills up the space of everyday life providing warmth, yet this part of the electromagnetic spectrum remains the least explored region. THz science and technology is a new and exciting frontier with a broad range of applications. For example, the unique and advanced techniques of THz spectroscopy have been proved to be a powerful tool to investigate the material properties inaccessible until recently. Interacting with a semiconductor, light can create oppositely charged particles, called electrons and holes. When the optical transition occurs near the energy band gap, the attractive interaction between the charged particles leads to the formation of a hydrogen-like system of an electron-hole pair. THz waves strongly interact with the electron-hole pair in semiconductors, because the hydrogen-like system is resonant at THz frequencies. The THz interaction can induce peculiar quantum dynamics of the electron-hole pair in semiconductor nanostructures. The resulting quantum dynamics and associated optical effects are of great interest because the fundamental physical processes have broad applications for ultrahigh-speed optoelectronic devices beyond 100 GHz. The outreach programs include optics demonstrations for K-12 students, research experience for high school students, and professional development opportunity for science and math teachers.
****技术摘要****这项研究解决了凝结物质中光 - 物质相互作用的基本问题:在存在强电磁波的情况下,半导体中的量子状态如何发展?迄今为止,几乎没有探索半导体中标记过渡的量子动力学(1-10 MeV的低能激发)。该项目的目的是建立量子动力学如何在多电子系统中展开的具体物理图片。与半导体纳米结构中的电子孔(E-H)波数据包相互作用,强烈的Terahertz(THZ)脉冲会诱导在Picsecond Time尺度上发生的内标跃迁。超快光学/THZ探针脉冲不仅可以解决幅度,还可以解决时域中量子状态的相位,从而可以完全映射量子动力学。鉴于库仑相互作用控制了量子动力学,时间分辨的THZ研究将为了解E-H系统中的库仑相关性和多体激发的变形提供新的机会。随着THZ强度超过一定水平,光结合相互作用的性质将经历定性的过渡,显示了电子和孔的场诱导运动的特征。这将设定一个独特的阶段,以观察冷凝物质中光 - 物质相互作用的量子到古典跃迁。外展计划包括针对K-12学生的光学演示,高中生的研究经验以及科学和数学老师的专业发展机会。天然发生的THZ辐射填补了日常生活的空间,提供了温暖,但是电磁频谱的这一部分仍然是最不受欢迎的区域。 THZ Science和Technology是一个新的令人兴奋的领域,具有广泛的应用。例如,THZ光谱的独特和先进技术已被证明是研究材料属性直到最近无法访问的强大工具。与半导体相互作用,光可以产生相反电荷的颗粒,称为电子和孔。当光学跃迁发生在能带隙附近时,带电颗粒之间的有吸引力的相互作用会导致形成电子孔对的氢样系统。 THz波与半导体中的电子孔对强烈相互作用,因为氢样系统在Thz频率下具有谐振。 THZ相互作用可以诱导半导体纳米结构中电子孔对的特殊量子动力学。最终产生的量子动力学和相关的光学效应引起了人们的极大兴趣,因为基本的物理过程对超过100 GHz以上的超速光电设备有广泛的应用。外展计划包括针对K-12学生的光学演示,高中生的研究经验以及科学和数学老师的专业发展机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun-Shik Lee其他文献
Principles of Terahertz Science and Technology
- DOI:
10.1007/978-0-387-09540-0 - 发表时间:
2008-12 - 期刊:
- 影响因子:0
- 作者:
Yun-Shik Lee - 通讯作者:
Yun-Shik Lee
Yun-Shik Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun-Shik Lee', 18)}}的其他基金
High-Field Terahertz Driven Photocarrier Dynamics in Nanomaterials
纳米材料中的高场太赫兹驱动光载流子动力学
- 批准号:
1905634 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Coherent Manipulation of Carriers and Nonlinear Optical Processes in Semiconductor Quantum Wells Via Intense Multi-Cycle Terahertz Pulses
职业:通过强多周期太赫兹脉冲对半导体量子阱中的载流子和非线性光学过程进行相干操纵
- 批准号:
0449426 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
基于时空整形超快激光液相剥离的单层量子点快速绿色可控制备
- 批准号:51775047
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
强场作用下双原子分子的电子运动及控制
- 批准号:11504221
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
量子体系控制理论与实验验证系统
- 批准号:61134008
- 批准年份:2011
- 资助金额:280.0 万元
- 项目类别:重点项目
在分子单量子态水平上研究飞秒激光对化学反应通道的超快控制作用
- 批准号:91121006
- 批准年份:2011
- 资助金额:350.0 万元
- 项目类别:重大研究计划
基于量子点光诱导电子转移机制的可见光控制抗癌药物靶向释放的纳米载药体系
- 批准号:21173078
- 批准年份:2011
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Active control of fracture and strength for oxide materials using electron beam induced quantum dot array
使用电子束诱导量子点阵列主动控制氧化物材料的断裂和强度
- 批准号:
22H01819 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Electron-phonon processes in gate-defined silicon quantum dots: measurement, control, and applications.
职业:门定义硅量子点中的电子声子过程:测量、控制和应用。
- 批准号:
2046428 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
DGECR-2020-00521 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Discovery Launch Supplement