High-Field Terahertz Driven Photocarrier Dynamics in Nanomaterials
纳米材料中的高场太赫兹驱动光载流子动力学
基本信息
- 批准号:1905634
- 负责人:
- 金额:$ 37.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractThe goal of this project is to study the movement of electrons in semiconductor materials when exposed to electromagnetic waves with short pulses but large energy. Better knowledge of the fundamental science of this interaction could lead to making electronic and photonic devices that operate at high-speed. Naturally occurring electromagnetic waves fill up space of everyday life, so it is important to understand how electrons in semiconductors react when exposed to high-energy electromagnetic waves. This research team will employ extremely short electromagnetic pulses with large energy to investigate the movement of electrons in materials with nanometer-scale dimensions such as carbon nanotubes, graphene and vanadium dioxide. The outcome of this project could uncover new knowledge crucial for developing devices for quantum information processing and for the next generation high-speed electronic and photonic devices. This project will also educate and train graduate and undergraduate students, giving them profound knowledge that will prepare them for employment in high-tech industries. The summer outreach activities in the project include optics demonstrations and research experience for high school students and minority students in the Portland Community College system. Technical AbstractHigh-field electron dynamics in nanomaterials in the terahertz (THz) regime is an uncharted subject, yet the importance of field-control of nanostructures cannot be emphasized enough considering its potential application to high-speed electronics and quantum information processing among other areas. This project aims to understand ultrafast photocarrier dynamics in nanomaterials driven by intense terahertz pulses, where the terahertz field is strong enough to make substantial changes in the electronic band structure of the material. The research team investigates ultrafast insulator-to-metal transition in a strongly correlated material, vanadium dioxide, driven by strong THz pulses and femtosecond laser excitations, and characterize the dynamics of correlated electrons in highly non-equilibrium states. It also studies the microscopic mechanisms underlying the high-field photocarrier dynamics in low-dimensional materials, such as carbon nanotubes, graphene and molybdenum disulfide, under extreme conditions where the THz field is strong enough to induce band-to-band tunneling. Time-resolved optical and THz spectroscopy is employed to observe and to coherently control the extreme non-equilibrium dynamics of many electrons with sub-picosecond resolution, while exploiting the field enhancement and subwavelength confinement in THz plasmonic devices. This research project lays the groundwork for the potential applications to ultrahigh-speed electronics and photonics such as field-effect transistors, optical modulators, wireless interconnects, and frequency converters. The fundamental understandings and experimental methods obtained from this research is valuable information for studying high-field light-matter interactions in various material systems such as anharmonic phonon dynamics in solids, nonperturbative dynamics of superconductors, and nonlinear vibrations in molecules. The field enhancement and subwavelength focusing in terahertz plasmonic devices can be applied to imaging and sensing applications. The students working on the research project will gain profound knowledge about the fundamental science and technical skills to conduct experiments using state-of-the-art optoelectronic instruments. The project involves undergraduate researchers working on their senior thesis or participating in REU activities and support outreach activities inspiring young minds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该项目的目的是研究半导体材料中电子的运动,当暴露于短脉冲但大能量的电磁波时。更好地了解这种相互作用的基本科学可能会导致制造高速运行的电子和光子设备。天然发生的电磁波填补了日常生活的空间,因此重要的是要了解半导体中的电子在暴露于高能电磁波时如何反应。该研究团队将使用具有较大能量的极短电磁脉冲来研究具有纳米尺寸尺寸的材料中电子的运动,例如碳纳米管,石墨烯和二氧化钒。该项目的结果可能会发现对于开发用于量子信息处理的设备以及下一代高速电子和光子设备至关重要的新知识。该项目还将教育和培训毕业生和本科生,从而为他们提供深刻的知识,使他们为高科技行业就业做好准备。该项目的夏季外展活动包括波特兰社区学院系统中的高中生和少数族裔学生的光学演示和研究经验。 Terahertz(THZ)制度中的纳米材料中的技术抽象性电场电子动力学是一个未知的受试者,但是考虑到其潜在的应用在其他领域中,纳米结构的现场控制的重要性无法得到足够的强调。该项目旨在了解由强烈的Terahertz脉冲驱动的纳米材料中的超快速光载体动力学,其中Terahertz场足够强大,足以对材料的电子带结构进行重大变化。研究小组研究了在强相关的材料,二氧化钒中的超快绝缘体到金属的转变,由强烈的THZ脉冲和飞秒激光激发驱动,并表征高度非平衡状态中相关电子的动力学。它还研究低维材料中高场光载体动力学基础的微观机制,例如碳纳米管,石墨烯和二硫化钼,在THZ场的极端条件下足以诱导带对频段隧道的极端条件下。使用时间分辨的光谱和THZ光谱法可以观察并相干地控制许多具有亚比秒分辨率的许多电子的极端非平衡动力学,同时利用THZ等离子设备中的场增强和亚波长度限制。该研究项目为超高速度电子和光子学的潜在应用奠定了基础,例如现场效应晶体管,光学调节器,无线互连和频率转换器。从这项研究中获得的基本理解和实验方法对于研究各种材料系统中的高场光结合相互作用,例如固体中的鼻声子动力学,超导体的非扰动动力学以及分子中的非线性振动。 Terahertz等离子体设备中的场增强和亚波长可以应用于成像和传感应用。从事研究项目的学生将获得有关使用最先进的光电仪器进行实验的基本科学和技术技能的深刻知识。该项目涉及从事高级论文或参与REU活动的本科研究人员,并支持激发年轻人的外展活动。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Terahertz Driven Opacity-Transparency Transition in Photoexcited Carbon Nanotubes
太赫兹驱动光激发碳纳米管的不透明-透明转变
- DOI:10.1364/ls.2021.lth6e.2
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lee, Byounghwak;Mousavian, Ali;Bradley, Alden;Lee, Yun-Shik
- 通讯作者:Lee, Yun-Shik
Terahertz Control of Plasmon Induced Opacity in Photoexcited Metamaterial on GaAs
- DOI:10.1364/fio.2020.jw6a.6
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:A. Mousavian;Z. J. Thompson;Byounghwak Lee;Alden N. Bradley;Yun-Shik Lee
- 通讯作者:A. Mousavian;Z. J. Thompson;Byounghwak Lee;Alden N. Bradley;Yun-Shik Lee
Anomalous nonlinear terahertz transmission of photoexcited carbon nanotubes
- DOI:10.1364/josab.439409
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Byounghwak Lee;A. Mousavian;Alden N. Bradley;Yun-Shik Lee
- 通讯作者:Byounghwak Lee;A. Mousavian;Alden N. Bradley;Yun-Shik Lee
Nonlinear Optical Transmission in WSe2 Induced by Intense THz Fields
强太赫兹场引起的 WSe2 中的非线性光传输
- DOI:10.1364/fio.2022.fth1c.3
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bradley, Alden N.;Guay, Viela;Thorp, Spencer G.;Zhang, Yue;van der Zande, Arend M.;Graham, Matthew;Lee, Yun-Shik
- 通讯作者:Lee, Yun-Shik
Strong-field terahertz control of plasmon induced opacity in photoexcited metamaterial
- DOI:10.1364/josab.409224
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:A. Mousavian;Z. J. Thompson;Byounghwak Lee;Alden N. Bradley;Milo Sprague;Yun-Shik Lee
- 通讯作者:A. Mousavian;Z. J. Thompson;Byounghwak Lee;Alden N. Bradley;Milo Sprague;Yun-Shik Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun-Shik Lee其他文献
Principles of Terahertz Science and Technology
- DOI:
10.1007/978-0-387-09540-0 - 发表时间:
2008-12 - 期刊:
- 影响因子:0
- 作者:
Yun-Shik Lee - 通讯作者:
Yun-Shik Lee
Yun-Shik Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun-Shik Lee', 18)}}的其他基金
Quantum Control of Electron-Hole Wave Packets in Semiconductor Nanostructures with Strong Terahertz Pulses
强太赫兹脉冲对半导体纳米结构中电子空穴波包的量子控制
- 批准号:
1063632 - 财政年份:2011
- 资助金额:
$ 37.96万 - 项目类别:
Continuing Grant
CAREER: Coherent Manipulation of Carriers and Nonlinear Optical Processes in Semiconductor Quantum Wells Via Intense Multi-Cycle Terahertz Pulses
职业:通过强多周期太赫兹脉冲对半导体量子阱中的载流子和非线性光学过程进行相干操纵
- 批准号:
0449426 - 财政年份:2005
- 资助金额:
$ 37.96万 - 项目类别:
Continuing Grant
相似国自然基金
量子限制杂质原子作为单电子量子点对Terahertz远红外发光器的应用
- 批准号:60776044
- 批准年份:2007
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
- 批准号:
24K07524 - 财政年份:2024
- 资助金额:
$ 37.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measurement station for ultrafast terahertz-driven photoemission spectroscopy
超快太赫兹驱动光电子能谱测量站
- 批准号:
465668329 - 财政年份:2022
- 资助金额:
$ 37.96万 - 项目类别:
Major Research Instrumentation
Magnetotransport phenomena in terahertz and dc driven Dirac fermion systems
太赫兹和直流驱动狄拉克费米子系统中的磁输运现象
- 批准号:
466114853 - 财政年份:2021
- 资助金额:
$ 37.96万 - 项目类别:
Research Grants
Experimental Demonstration of Terahertz-Driven Particle Acceleration
太赫兹驱动粒子加速的实验演示
- 批准号:
2488454 - 财政年份:2020
- 资助金额:
$ 37.96万 - 项目类别:
Studentship
Research on ultra-low power sub-terahertz superconducting quantum digital systems based on pulse-driven circuits
基于脉冲驱动电路的超低功耗亚太赫兹超导量子数字系统研究
- 批准号:
18H05211 - 财政年份:2018
- 资助金额:
$ 37.96万 - 项目类别:
Grant-in-Aid for Specially Promoted Research