CAREER: Electron-phonon processes in gate-defined silicon quantum dots: measurement, control, and applications.

职业:门定义硅量子点中的电子声子过程:测量、控制和应用。

基本信息

  • 批准号:
    2046428
  • 负责人:
  • 金额:
    $ 68.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Non-technical abstract: Acting like electrically controllable ‘artificial atoms’, quantum dots are a useful system to study a wide range of condensed matter physics phenomena ranging from bond formation and magnetism to the fundamentals of quantum information. In this project, the research team will study the ubiquitous coupling between electrons and phonons. Of particular interest is the impact of the phonons on the spin of the electrons. Control over the phonon-spin interaction, achieved here via nano-structuring and applied strain, has crucial implications for a number of applications, such as quantum computing. In the course of this project, a new generation of undergraduate and graduate students are being trained with expertise in nanoscale fabrication, cryogenics, and microwave measurements. These skills are relevant to the nationwide calls for a quantum workforce. The research efforts are being integrated with the Microelectronics Processing course at Mines via development of illustrative quantum experiments. Finally, modules are being developed to be incorporated into outreach efforts to middle school children in the Rocky Mountain Camp for Dyslexic Children.Technical abstract: Electron-phonon coupling is ubiquitous in Condensed Matter systems. It plays a pivotal role in relaxation and decoherence (in case of multiple spins) of electronic spin states and is predicted to mediate many-body phenomena. An immense body of research on tailoring it in fields as varied as superconductivity and thermoelectrics exists. Insight from these fields has never been applied to experiments in few-spin systems. This is a new and impactful opportunity, since few-spin systems are the fundamental prototype for rationalizing spin dynamics in more complex systems, important for quantum information applications. This project bridges the gap via an experimental effort focused on control and measurement of electron-phonon processes in silicon gate-defined quantum dots. The phonon bath is engineered through nano-structuring and spin-orbit coupling is controlled via applied strain to investigate the theoretically predicted ‘protected’ states. Measurements of spin relaxation and decoherence time are performed. Controlling the coupling of spins to the phonon bath has profound implications. First, it can be used for the design of ‘hot’ qubits and spintronic devices. Second, it leads to an examination of hitherto untested theoretical predictions. Third, the novel protocols developed in the project for sensing nanoscale electron-phonon thermalization are foundational for future quantum thermodynamics studies on the quantum dot platform. Finally, this is a pioneering effort to apply insight from the vast field of nano-phononics to spin qubits and paves the way for future integration of the fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:像电控制的“人造原子”一样,量子点是一个有用的系统,用于研究从键形成和磁性到量子信息的基础知识的广泛的凝结物理物理现象。在这个项目中,研究团队将研究电子与声子之间的无处不在的耦合。特别值得关注的是声子对电子自旋的影响。通过纳米结构和应用应变实现的对声子自旋相互作用的控制对许多应用(例如量子计算)具有至关重要的影响。在这个项目的过程中,新一代的本科生和研究生正在接受纳米级制造,低温和微波测量方面的专业知识。这些技能与全国性的量子劳动力有关。通过开发说明性量子实验,研究工作与矿山的微电子处理课程融合在一起。最后,正在开发模块,以纳入落基山山营地的中学儿童的外展工作。技术摘要:电子 - phonon耦合无处不在,在冷凝的物质系统中。它在电子自旋态的松弛和变质(多个自旋)中起关键作用,预计可以介导多体现象。关于在超导性和热电学的各种田野中量身定制它的大量研究。这些领域的洞察力从未应用于几旋链系统中的实验。这是一个新的且有影响力的机会,因为很少的自旋系统是更复杂系统中旋转动力学合理化的基本原型,对于量子信息应用很重要。该项目通过侧重于控制和测量硅栅极定义的量子点的电子 - 光过程的实验工作来弥合差距。声子浴是通过纳米结构进行设计的,并通过施加的应变来控制自旋轨道耦合,以研究理论预测的“受保护”状态。进行自旋松弛和分离时间的测量。控制旋转与声子浴的耦合具有深远的影响。首先,它可用于设计“热”量子和自旋设备的设计。其次,它导致对迄今未经测试的理论预测的检查。第三,该项目在感测纳米级电子phonon热化的项目中开发了新的方案,是量子点平台上未来的量子热力学研究的基础。最后,这是一项开创性的努力,旨在将纳米音波广泛领域的洞察力运用,以旋转数量,并为未来整合该领域的方式铺平道路。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meenakshi Singh其他文献

role of gender and training age in shaping physical characteristics of volleyball players
性别和训练年龄在塑造排球运动员身体特征中的作用
Oral rehabilitation and management of mentally retarded.
口腔康复和智障管理。
A NOVEL QSAR MODEL FOR EVALUATING AND PREDICTING THE INHIBITION ACTIVITY OF H1- RECEPTOR ANTAGONISTS: A SERIES OF THIENOPYRIMIDINE DERIVATIVES
评估和预测 H1 受体拮抗剂抑制活性的新型 QSAR 模型:一系列噻吩并嘧啶衍生物
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meenakshi Singh;S. Singh;M. Chhabria
  • 通讯作者:
    M. Chhabria
Identification of the novel HLA‐DQB1*04:02:01:18 allele in a Maharashtrian individual from India
印度马哈拉施特拉邦个体中新型 HLA-DQB1*04:02:01:18 等位基因的鉴定
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Selma Z D'silva;Manisha Tambe;Andrea S Pinto;Meenakshi Singh
  • 通讯作者:
    Meenakshi Singh
Emergence of tigecycline & colistin resistant Acinetobacter baumanii in patients with complicated urinary tract infections in north India
替加环素的出现

Meenakshi Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meenakshi Singh', 18)}}的其他基金

Thermoelectric Effects in Superconductor-Ferromagnet Hybrids
超导体-铁磁体混合体中的热电效应
  • 批准号:
    1807583
  • 财政年份:
    2018
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Standard Grant

相似国自然基金

梯度介电常数近零复合材料的构筑与宽光谱发射率的电子声子协同调控
  • 批准号:
    52371139
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大尺度复杂体系电子-声子相互作用计算方法的拓展与应用
  • 批准号:
    12374008
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
片上自由电子激发双曲声子极化激元的调控及增强效应研究
  • 批准号:
    62375039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
转角摩尔超晶格中电子-声子耦合的探测和调控
  • 批准号:
    12274447
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
  • 批准号:
    2205973
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Continuing Grant
Phonon and electron system with different dimensions formed by silicene manipulation and development of high performance thermoelectric thin film device
硅烯操控形成不同维度的声子和电子体系及高性能热电薄膜器件的开发
  • 批准号:
    23H00258
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Simulating Electron - Phonon Processes with Photonics
用光子学模拟电子-声子过程
  • 批准号:
    2890220
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Studentship
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
  • 批准号:
    2337930
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Standard Grant
Control theory of photo-induced dynamics in correlated electron systems utilizing phonon-excitation
利用声子激发的相关电子系统光致动力学控制理论
  • 批准号:
    23KJ0883
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了