RAPID: Collaborative Research: Multiscale plume modeling of the Deepwater Horizon oil-well blowout for environmental impact assessment and mitigation
RAPID:协作研究:深水地平线油井井喷的多尺度羽流建模,用于环境影响评估和缓解
基本信息
- 批准号:1045831
- 负责人:
- 金额:$ 3.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subsurface plume from the Deepwater Horizon (DH) accidental oil-well blowout is a complex, layered system of intrusions containing oil, dissolved hydrocarbons, and injected dispersants that will have far-reaching environmental consequences; however, no modeling tools are currently producing highly-resolved predictions of the plume structure and evolution. The goal of this Rapid Response Research Proposal (RAPID) is to develop a three-dimensional, multiscale hydrodynamic model for the DH blowout plume that combines the Reynolds averaged Navier Stokes (RANS) modeling approach with the method of large-eddy simulation (LES). The resulting model platform will be validated to field and laboratory data, will respect the relevant chemistry and thermodynamics of the released oil and natural gas, and will be forced by the measured ambient conditions surrounding the spill. Such a simulation tool is urgently needed to guide field observations, predict the onshore migration and loop-current capture of the spilled oil, assess the effectiveness and potential environment impact of dispersants injected at the source, and to understand the response to this event already measured in the vertical migration of plankton and fish. The validated modeling platform will be developed through complementary laboratory experiments, numerical modeling, and analysis of field data. The laboratory experiments will evaluate the effects of currents as the flow through the plume and pull oil and dissolved constituents into the wake of the plume. The numerical methods will utilize a very large eddy simulation (VLES) to resolve the dominant plume structures in the near field of the blowout plume and will nest this model in a far-field model based on the unsteady RANS approach. Field data from acoustic Doppler current profilers will provide model forcing and validation data and will also be analyzed to understand the role of subsurface plume dynamics on the vertical migration of plankton and fish as also recorded in the ADCP data. Early analysis of this data shows a very rapid shut-down of the diurnal vertical migration pattern at nearby stations shortly after the start of the spill. This is the first documented environmental response to the blowout, and it remains unknown whether this is due to mortality, avoidance, light penetration changes or other processes. The sub-surface plume model developed here will provide detailed predictions of the subsurface plume structure necessary to analyze this environmental response. Intellectual Merit: The primary intellectual merit of the project will be an understanding of the critical physical and chemical processes in an accidental oil-well blowout that lead to the subsurface layered structure of oil and dissolved hydrocarbons in the water column. Important insight will also be gained on the appropriateness of a classical RANS model for predicting the dynamics of the oil and gas intrusions. Broader Impact: Predictions from the model will help guide the collection of observation data in the field and will be applied to understand why plankton and fish in the vicinity of the blowout shut down their vertical migration pattern shortly after the blowout. The model is also needed to predict the transport of oil and injected dispersants throughout the Gulf ecosystem, including onshore and into the loop current and potentially into the Atlantic ocean. Detailed studies of turbulence in multiphase plumes conducted in the later stages of the project will ultimately result in a reliable model framework featuring a zonal RANS-VLES simulation tool applicable to a wide range of environmental applications of multiphase plumes, including CO2 sequestration, lake aeration, and sediment plumes, among others.
来自深水地平线(DH)意外油孔井喷的地下羽流是一种复杂的,含油,溶解的碳氢化合物和注入的分散剂的复杂,分层的系统,这些系统将带来深远的环境后果;但是,目前尚无建模工具对羽状结构和进化的高度分辨的预测。 这项快速响应研究建议(快速)的目的是为DH井喷式羽流开发三维的多尺度流体动力模型,该模型将Reynolds平均Navier Stokes(RANS)建模方法与大型模拟方法(LES)相结合。 最终的模型平台将被验证为现场数据和实验室数据,将尊重释放的石油和天然气的相关化学和热力学,并将受到溢出周围测量的环境条件的强迫。 迫切需要这种模拟工具来指导现场观察,预测溢出油的陆上迁移和环流捕获,评估注入来源注入的分散物的有效性和潜在环境影响,并了解已经测量的此事件的响应在浮游生物和鱼的垂直迁移中。 经过验证的建模平台将通过补充实验室实验,数值建模和现场数据分析来开发。 实验室实验将评估当流经羽流的流动并将油和溶解成分拉到羽流中时电流的影响。 数值方法将利用一个非常大的涡流模拟(VLE)来解决井喷羽流的近场中的主要羽流结构,并将基于不稳定的Rans方法中的远场模型中嵌套该模型。 来自声学多普勒当前介质者的现场数据将提供模型强迫和验证数据,还将进行分析,以了解地下羽流动力学对浮游生物和FISH垂直迁移的作用,以及ADCP数据中还记录。 对该数据的早期分析表明,溢出开始后不久,附近车站的昼夜垂直迁移模式非常快速地关闭。 这是对井喷的第一个记录的环境反应,这是否是由于死亡率,避免,渗透变化或其他过程所致。 此处开发的地下羽流模型将提供分析该环境响应所需的地下羽状结构的详细预测。 智力优点:该项目的主要智力优点将是对意外的油井井喷中关键物理和化学过程的理解,这导致水柱中的油和溶解的碳氢化合物的地下分层结构。 重要的见解还将获得经典兰斯模型的适当性,以预测石油和天然气侵入的动态。 更广泛的影响:该模型的预测将有助于指导现场的观察数据收集,并将应用于井喷附近的浮游生物和鱼类在井喷附近关闭其垂直迁移模式的原因。 还需要该模型来预测整个海湾生态系统(包括陆上和循环电流)以及潜在进入大西洋的运输。 在项目后期进行的多相羽流中的湍流的详细研究最终将导致可靠的模型框架,其中包含适用于多种环境羽毛的各种环境应用,包括二氧化碳,湖泊曝气,湖泊曝气,湖泊曝气,,湖泊李子的广泛环境应用,和沉积物羽毛等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Socolofsky其他文献
Scott Socolofsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Socolofsky', 18)}}的其他基金
Collaborative Research: Managing oxygen demand in lakes and reservoirs - a competition between natural and artificial forcing
合作研究:管理湖泊和水库的需氧量——自然和人工强迫之间的竞争
- 批准号:
1034112 - 财政年份:2010
- 资助金额:
$ 3.74万 - 项目类别:
Continuing Grant
CAREER: The Role of Turbulence, Coherent Structures, and Intermittency for Controlling Transport in Multiphase Plumes in the Environment
职业:湍流、相干结构和间歇性在控制环境中多相羽流传输中的作用
- 批准号:
0348572 - 财政年份:2004
- 资助金额:
$ 3.74万 - 项目类别:
Continuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 3.74万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 3.74万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 3.74万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 3.74万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 3.74万 - 项目类别:
Standard Grant