CDI-Type I: Using Machine Learning to Develop New Approaches to Semiempirical Quantum Chemistry
CDI-I 型:利用机器学习开发半经验量子化学的新方法
基本信息
- 批准号:1027985
- 负责人:
- 金额:$ 67.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed work melds quantum chemistry with machine learning to develop efficient computational methods for predicting the electronic structure of chemical systems. The past decades have brought quantum chemistry to a point where highly accurate results can be routinely generated for small molecules. However, the computational cost increases rapidly with molecular size, making calculations on proteins or complex nanostructures challenging. This project takes advantage of molecular similarity, whereby molecular fragments behave similarly in different environments, to substantially lower the computational cost. First, a database of accurate but computationally expensive high-level results on the electronic structure of a molecular fragment in a range of environments is generated. This data is then used to develop a machine learning algorithm that uses information about the molecular fragment and its environment to predict the behavior of the fragment. The challenge for machine learning is to generalize to new fragments and environments, to integrate this generalization into the larger molecular simulation, and finally to characterize the performance to allow reporting of the confidence in the eventual simulation results. For example, if the learning algorithm works by breaking chemical space into regions that can be well described with low-cost approximating functions, the approach must characterize the boundaries of these regions and handle the transitions between the regions. This challenge will be addressed by a close integration of the chemistry and machine learning portions of the project, such that design decisions regarding the form of the approximating function and learning algorithm are made together.The ability to quickly and accurately generate the energy of a molecular system would have broad impact in domains such as biology and nanotechnology. Current computational approaches to large molecular systems rely on greatly simplified models of the energy, such as the ball and stick models of molecular mechanics. While such models are useful for structure, functional predictions often require breaking and formation of chemical bonds, which requires more realistic electronic structure approaches. The approaches developed here are designed to make realistic functional predictions for large systems computationally feasible. The close integration of chemistry and machine learning also provides excellent interdisciplinary training opportunities for both graduate and undergraduate students.This is a Cyber-Enabled Discovery and Innovation Program award and is co-funded by the Division of Chemistry and the Office of Multidisciplinary Activities.
拟议的工作将量子化学与机器学习相结合,开发有效的计算方法来预测化学系统的电子结构。过去几十年,量子化学已经发展到可以定期为小分子生成高精度结果的阶段。然而,计算成本随着分子尺寸的增加而迅速增加,使得蛋白质或复杂纳米结构的计算变得具有挑战性。该项目利用分子相似性,即分子片段在不同环境中表现相似,从而大大降低计算成本。首先,生成一个数据库,其中包含一系列环境中分子片段电子结构的准确但计算成本昂贵的高级结果。然后,该数据用于开发机器学习算法,该算法使用有关分子片段及其环境的信息来预测片段的行为。机器学习面临的挑战是泛化到新的片段和环境,将这种泛化集成到更大的分子模拟中,最后表征性能以允许报告最终模拟结果的置信度。 例如,如果学习算法通过将化学空间分解为可以用低成本近似函数很好地描述的区域来工作,则该方法必须表征这些区域的边界并处理区域之间的过渡。这一挑战将通过该项目的化学和机器学习部分的紧密集成来解决,这样就可以一起做出有关近似函数形式和学习算法的设计决策。快速准确地产生分子能量的能力系统将在生物学和纳米技术等领域产生广泛的影响。当前大分子系统的计算方法依赖于大大简化的能量模型,例如分子力学的球和棒模型。虽然此类模型对结构有用,但功能预测通常需要化学键的断裂和形成,这需要更现实的电子结构方法。这里开发的方法旨在使大型系统的实际功能预测在计算上可行。化学和机器学习的紧密结合也为研究生和本科生提供了极好的跨学科培训机会。这是一个网络驱动的发现和创新计划奖项,由化学系和多学科活动办公室共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Yaron其他文献
David Yaron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Yaron', 18)}}的其他基金
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
- 批准号:
1726856 - 财政年份:2017
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
CI-TEAM DEMO: Collaborative Research: An Online Community to Broaden Access to the Computational Research Enterprise
CI-TEAM 演示:协作研究:扩大计算研究企业访问范围的在线社区
- 批准号:
1135553 - 财政年份:2011
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
Online Chemistry: Problems, Concepts and Contexts
在线化学:问题、概念和背景
- 批准号:
1123355 - 财政年份:2011
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
Collaborative Research ChemEd DL: Extending a Unique Pathway for Chemical Education
合作研究 ChemEd DL:拓展化学教育的独特途径
- 批准号:
0937888 - 财政年份:2009
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
Collaborative Research: Recurring Patterns in Molecular Science: Reusable Learning Resources
协作研究:分子科学中的重复模式:可重复使用的学习资源
- 批准号:
0817493 - 财政年份:2008
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
Collaborative Research: Interdisciplinary Virtual Labs for Undergraduate Education in the NSDL MatDL
合作研究:NSDL MatDL 本科教育跨学科虚拟实验室
- 批准号:
0632751 - 财政年份:2007
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
Computational Modeling of the Photophysics of Organic Molecules and Materials
有机分子和材料光物理学的计算模型
- 批准号:
0719350 - 财政年份:2007
- 资助金额:
$ 67.09万 - 项目类别:
Continuing Grant
Collaborative Project: ChemEd Digital Library: An NSDL Pathway for Chemical Sciences Education
合作项目:ChemEd 数字图书馆:化学科学教育的 NSDL 途径
- 批准号:
0632269 - 财政年份:2006
- 资助金额:
$ 67.09万 - 项目类别:
Continuing Grant
Online Systems to Support Problem Solving and Learning in Introductory Chemistry
支持化学入门问题解决和学习的在线系统
- 批准号:
0443041 - 财政年份:2005
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
Computational Modeling of the Photophysics of Conjugated Polymers
共轭聚合物光物理的计算模型
- 批准号:
0316759 - 财政年份:2003
- 资助金额:
$ 67.09万 - 项目类别:
Continuing Grant
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
结构-能动性视角下特殊类型地区新产业路径塑造机制及效应研究
- 批准号:42371174
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
氯盐类型对超高性能混凝土基体中氯离子结合与钢筋锈蚀影响机理研究
- 批准号:52308249
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同菌根类型树种与毛竹磷竞争对土壤碳动态的影响机制
- 批准号:32371726
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
- 批准号:
1125234 - 财政年份:2011
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
- 批准号:
1125302 - 财政年份:2011
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
CDI-Type I: Accelerating Simulations Using CPU+FPGA Heterogeneous Processing
CDI-Type I:使用 CPU FPGA 异构处理加速仿真
- 批准号:
1124931 - 财政年份:2011
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
- 批准号:
1125174 - 财政年份:2011
- 资助金额:
$ 67.09万 - 项目类别:
Standard Grant
CDI-Type I: Collaborative Research: Cyber Enabled Engineering of Particle Based Materials and Devices using Energy Landscapes
CDI-I 型:协作研究:利用能源景观对基于粒子的材料和设备进行网络工程
- 批准号:
0835532 - 财政年份:2008
- 资助金额:
$ 67.09万 - 项目类别:
Continuing Grant