CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
基本信息
- 批准号:1125302
- 负责人:
- 金额:$ 76.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerous complex systems in nature and in technology defy concise characterization because they exhibit strongly nonlinear behaviors that lack all symmetries and are highly non-periodic on a wide range of spatial and temporal scales. Characterization by detailed measurement (in lab experiments or direct numerical simulations) is now possible in many cases using modern measurement technologies or computational techniques. However, the resulting deluge of data often leads to little insight; in particular, there is frequently no good way to connect quantitatively experimental measurements of a particular complex system with the output from simulations/models of the same system. New, computationally-based, mathematical tools from algebraic topology have the potential to bridge the gap between measurements and models; the proposed research will explore the use of algebraic topology to link numerical simulations and laboratory experiments in situations where complexity arises because the system under study is driven out of thermodynamic equilibrium. The research focuses on an outstanding paradigm for nonequilibrium complexity: fluid flow driven by temperature gradients (thermal convection). The planned work brings three unique capabilities together in a single effort: (1) the experimental ability both to measure and to manipulate precisely complex, convective flows; (2) efficient methods for state-of-the-art, large scale, high-resolution numerical simulations of convective flow; (3) open source, general purpose, and efficient computational algorithms and software for computing algebraic topological invariants on large data sets. Topological tools will be developed both to characterize and to minimize model error as well as to compare and to quantify dynamical properties including Lyapunov exponents, dimensionality and bifurcations between complex spatiotemporal flow states. This effort should ultimately identify ways in which homology-based metrics can be used for building reduced order models that permit prediction and, perhaps, control of convective flow. More generally, we expect the metrics developed for convection should find broad application to PDE-modeled problems ranging from the control of cardiac arrythmias to the prediction of weather and climate.The behaviors of complex systems in the world around us can now both be measured with high fidelity using advanced sensing technologies and simulated with great realism using modern computer techniques. However, the enormous data sets typically produced in these cases are often difficult to interpret because there exist few good mathematical tools to connect quantitatively the experimental measurements of a given complex system with the output of computer simulations of that same system. The proposed research explores the use of the mathematics of topology to relate lab measurements to computer outputs in a particular complex system, thermal convection. The results of this work should lead to new ways to understand, to predict, and, perhaps, to control convective flow, which plays a direct role in natural processes (e.g., volcanism, earthquake dynamics, continential drift) and industrial applications (e.g., thermal regulation of many devices, the growth of semiconductor materials). Moreover, the topological tools developed for thermal convection should apply more generally to a wide variety of other problems involving complex systems including the forecasting of weather and climate; the dynamics of the biomass in the oceans; the onset of turbulence; the evolution of reagent patterns on a catalytic metal surface; and ventricular fibrillation in a human heart.
自然界和技术中的许多复杂系统无法进行简洁的表征,因为它们表现出强烈的非线性行为,缺乏所有对称性,并且在广泛的空间和时间尺度上高度非周期性。现在,在许多情况下,使用现代测量技术或计算技术可以通过详细测量(在实验室实验或直接数值模拟中)进行表征。然而,由此产生的海量数据往往导致洞察力有限;特别是,通常没有好的方法将特定复杂系统的定量实验测量与同一系统的模拟/模型的输出联系起来。 来自代数拓扑的新的、基于计算的数学工具有可能弥合测量和模型之间的差距;拟议的研究将探索使用代数拓扑在由于所研究的系统脱离热力学平衡而出现复杂性的情况下将数值模拟和实验室实验联系起来。 该研究重点关注非平衡复杂性的一个突出范例:温度梯度驱动的流体流动(热对流)。计划中的工作将三种独特的能力结合在一起:(1)测量和操纵精确复杂的对流流的实验能力; (2) 最先进、大规模、高分辨率对流数值模拟的有效方法; (3) 开源、通用、高效的计算算法和软件,用于计算大数据集上的代数拓扑不变量。 将开发拓扑工具来表征和最小化模型误差,以及比较和量化动态特性,包括李亚普诺夫指数、复杂时空流状态之间的维数和分岔。 这项工作最终应该确定基于同源性的度量可用于构建降阶模型的方法,该模型允许预测,或许还可以控制对流。 更一般地说,我们期望为对流开发的指标应该广泛应用于偏微分方程模型的问题,从心律失常的控制到天气和气候的预测。我们周围世界的复杂系统的行为现在都可以通过使用先进的传感技术实现高保真度,并使用现代计算机技术进行逼真的模拟。然而,在这些情况下通常产生的大量数据集通常难以解释,因为很少有好的数学工具可以将给定复杂系统的实验测量与同一系统的计算机模拟的输出定量地联系起来。 拟议的研究探索了如何利用拓扑数学将实验室测量结果与特定复杂系统(热对流)中的计算机输出联系起来。这项工作的结果应该会带来理解、预测、也许还有控制对流的新方法,对流在自然过程(例如火山活动、地震动力学、大陆漂移)和工业应用(例如,许多器件的热调节、半导体材料的生长)。 此外,为热对流开发的拓扑工具应该更广泛地应用于涉及复杂系统的各种其他问题,包括天气和气候的预报;海洋生物量的动态;湍流的开始;催化金属表面上试剂模式的演变;和人类心脏的心室颤动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Schatz其他文献
The efficacy and safety of asthma medications during pregnancy.
怀孕期间哮喘药物的有效性和安全性。
- DOI:
10.1053/sper.2001.24569 - 发表时间:
2001 - 期刊:
- 影响因子:3.4
- 作者:
Michael Schatz - 通讯作者:
Michael Schatz
Radiographic contrast media infusions. Measurement of histamine, complement, and fibrin split products and correlation with clinical parameters.
放射线造影剂输注。
- DOI:
- 发表时间:
1979 - 期刊:
- 影响因子:14.2
- 作者:
R. Simon;Michael Schatz;D. D. Stevenson;Norvelle Curry;Frank Yamamoto;E F Plow;Johannes Ring;Carlos M. Arroyave - 通讯作者:
Carlos M. Arroyave
Adverse neonatal outcomes in pregnant women with asthma: An updated systematic review and meta-analysis.
哮喘孕妇的新生儿不良结局:最新的系统评价和荟萃分析。
- DOI:
10.1016/j.jaci.2023.11.737 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Annelies L. Robijn;S. Harvey;M. Jensen;Samuel Atkins;Kiah Quek;Gang Wang;Hannah Smith;Christina Chambers;Jennifer Namazy;Michael Schatz;Peter Gibson;Vanessa E. Murphy - 通讯作者:
Vanessa E. Murphy
Rhinitis , sinusitis , and upper airway disease Reliability , validity , and responsiveness of the Rhinitis Control Assessment Test in patients with rhinitis
鼻炎、鼻窦炎和上呼吸道疾病鼻炎患者鼻炎控制评估测试的可靠性、有效性和反应性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Eli O. Meltzer;Michael Schatz;Robert A Nathan;C. Garris;Richard H. Stanford;Mark Kosinski - 通讯作者:
Mark Kosinski
Michael Schatz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Schatz', 18)}}的其他基金
Collaborative Research: EAGER: Unraveling the Nature and Onset of Instabilities in Suspension Flows
合作研究:EAGER:揭示悬浮液流动不稳定性的本质和发生
- 批准号:
2230893 - 财政年份:2022
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Graduate Teaching Assistant Professional Development (GTA-PD) Workshop
研究生助教专业发展(GTA-PD)研讨会
- 批准号:
1647516 - 财政年份:2016
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
CAREER: Algorithms for single molecule sequence analysis
职业:单分子序列分析算法
- 批准号:
1627442 - 财政年份:2016
- 资助金额:
$ 76.56万 - 项目类别:
Continuing Grant
Collaborative Research: Revealing the Geometry of Spatio-temporal Chaos with Computational Topology: Theory, Numerics and Experiments
合作研究:用计算拓扑揭示时空混沌的几何:理论、数值和实验
- 批准号:
1622113 - 财政年份:2016
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
CAREER: Algorithms for single molecule sequence analysis
职业:单分子序列分析算法
- 批准号:
1350041 - 财政年份:2014
- 资助金额:
$ 76.56万 - 项目类别:
Continuing Grant
REU Site: CSHL NSF-REU Bioinformatics and Computational Biology Summer Undergraduate Program
REU 网站:CSHL NSF-REU 生物信息学和计算生物学暑期本科项目
- 批准号:
1156643 - 财政年份:2012
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Hands-On Research: Complex Systems Advanced Study Institute (China)
实践研究:复杂系统高等研究院(中国)
- 批准号:
1132192 - 财政年份:2011
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Transforming Homework into Cyberlearning in an Introductory STEM Course
在 STEM 入门课程中将家庭作业转变为网络学习
- 批准号:
0942076 - 财政年份:2009
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Laboratory Studies of Exact Coherent Structures in Wall Turbulence
壁湍流中精确相干结构的实验室研究
- 批准号:
0853691 - 财政年份:2009
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Collaborative Research: Institutionalizing a Reform Curriculum in Large Universities
合作研究:将大型大学的改革课程制度化
- 批准号:
0618519 - 财政年份:2006
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
相似国自然基金
束长蝽科二个同域分布物种的种内多类型线粒体基因重排类型、地理格局及其演化方式研究
- 批准号:32300369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
日粮纤维通过其代谢产物调控二花脸猪骨骼肌肌纤维类型转变机理的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
扫描透射电镜电子能量损失谱研究不同类型二维材料范德华异质结
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
滇中“三湖”流域不同类型湿地邻苯二甲酸酯的污染特征及生态风险评价
- 批准号:31960263
- 批准年份:2019
- 资助金额:40 万元
- 项目类别:地区科学基金项目
基于飞秒激光和塔尔伯特干涉仪制备的Type II光纤光栅阵列及高温传感器
- 批准号:61905192
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CDI-Type II: Computational Methods to Enable an Invertebrate Paleontology Knowledgebase
CDI-Type II:支持无脊椎动物古生物学知识库的计算方法
- 批准号:
1308762 - 财政年份:2014
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
- 批准号:
1341128 - 财政年份:2012
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Collaborative CDI-Type II: Cyber Enabled Discovery System for Advanced Multidisciplinary Study of Humanitarian Logistics for Disaster Response
协作 CDI-II 型:用于灾难响应人道主义后勤高级多学科研究的网络支持发现系统
- 批准号:
1123924 - 财政年份:2012
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Collaborative CDI-Type II: Cyber Enabled Discovery System for Advanced Multidisciplinary Study of Humanitarian Logistics for Disaster Response
协作 CDI-II 型:用于灾难响应人道主义后勤高级多学科研究的网络支持发现系统
- 批准号:
1124827 - 财政年份:2012
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant
Collaborative Research: CDI- Type II: Towards Analyzing Complex Petascale Datasets: The Milky Way Laboratory
合作研究:CDI-II 型:分析复杂千万亿次数据集:银河系实验室
- 批准号:
1124453 - 财政年份:2011
- 资助金额:
$ 76.56万 - 项目类别:
Standard Grant