CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models

CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用

基本信息

  • 批准号:
    1025519
  • 负责人:
  • 金额:
    $ 24.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

The surf zone is a spatially limited but highly energetic region of the near-shore ocean where waves shoal, break and dissipate energy through to the shoreline. Here, nonlinear surface wave profiles deviate strongly from the linear superposition of sinusoids assumed in deeper waters, with super-harmonic phase-locking leading to sharper, higher, crests and flatter troughs, while subharmonic interactions generate low frequency motions that can dominate dynamics in the inner surf and swash (run-up) zones. The surf zone becomes especially important in severe storms such as hurricanes where large wind waves can combine with fast currents, and water levels may be much higher than normal. The consequences of the wind wave-current interaction during hurricanes can affect inland wind wave propagation, can influence flooding far inland, and can change the sediment dynamics and therefore the shape of the coast. Unfortunately, the ability to model accurately and in detail this highly energetic and important zone has been limited due to requirements for very high levels of mesh resolution, complex governing equations and prohibitive computational costs.Intellectual merit: The long-term objective of this project is to improve the accuracy of hurricane inundation, current and wave climate models by locally incorporating the appropriate physics and levels of resolution. To significantly advance this goal, a multi-process, multi-scale framework which integrates new Green-Naghdi (GN) phase resolving wave (PRW) models with existing coupled wave action/long wave circulation models will be developed: this will greatly improve the ability to simulate detailed near-shore hydrodynamics during severe storms and other highly energetic events. Different physics and levels of resolution will be applied and coupled in the various portions of the global domain. In regions where rapid wave transformation does not occur, the standard shallow water equation combined with a non-phase resolving wave energy equation formulation will be applied. The new GN combined current and phase resolving wave equations will model the wave and current hydrodynamics in narrow zones where near-shore and/or structure induced wave breaking and run-up occurs.Numerous research issues relating to the algorithms, coupling mechanisms, physics and code design will be investigated. Verification and validation exercises will confirm the adequacy of the selected physics and algorithms while code performance studies will demonstrate the efficiency of the techniques. The project brings together expertise in mathematics, computational science, shallow water hydrodynamics, wave physics, coastal engineering and storm surge modeling.Broader impacts: The study will improve the ability to predict waves, water levels, and currents near and behind features such as barrier islands, dunes, near-shore breaking zones, inland roads and levees. Broader impacts of this work include improvements in the ability to: 1) evaluate flood risk behind a barrier or levee; 2) assess the actual degradation of dunes, barrier islands, levees, roads and railroads; 3) compute wave run-up behind wave breaking zones; 4) determine nonlinear wave climate around coastal structures such as levees, bridges and buildings; and 5) forecast storm surge and waves so as to help plan evacuations, assess coastal risk, design levees and closures, and operate shipping by federal and state agencies including FEMA, NOAA, the USACE, and the U.S. Navy.The algorithms and computational infrastructure developed under this project may be applicable to other problems in near-shore oceanography and coastal engineering, including water quality, shipping and ports operations, naval operations, marine ecology, weather and climate change, and wetland degradation and rebuilding. On a broader level, the computational techniques to be studied under this project apply to many other types of compressible and incompressible flow problems.
冲浪区是近岸海洋上的空间限制但高能的区域,波浪浅滩,破裂和耗散能量到海岸线。在这里,非线性表面波轮廓与在更深的水域中假定的正弦曲线的线性叠加强烈偏离,具有超谐波的相相锁定,导致尖锐,更高,山顶和平坦的槽槽,而亚谐波相互作用会产生低频运动,可以在内部表面和swash and swash(ump um up up up Up)Zone中占主导地位。冲浪区在严重的风暴中尤为重要,例如大风波可以与快速电流结合在一起的飓风,水位可能比正常水平高得多。飓风期间风浪电流相互作用的后果会影响内陆风波的传播,可能影响远处泛滥,并且可以改变沉积物动力学,从而改变海岸的形状。不幸的是,由于要求非常高的网格分辨率,复杂的管理方程式和过于良好的计算成本,因此能够准确和详细地建模这个高能和重要的区域的能力受到限制。Intellectual-Felirate:Intlectual Fure:该项目的长期目标是提高飓风淹没,当前和浪费气候模型的准确性,并通过局部结合适当的物理学和确定水平。为了显着促进这一目标,将开发出与现有的耦合波动动作/长波循环模型的新型Green-Naghdi(GN)相位解析波(PRW)模型集成的多进程,多规模的框架:这将大大提高模拟在暴风雨中及其他高度能量的近海动力学的能力。将在全球域的各个部分中应用和耦合不同的物理和分辨率水平。在没有发生快速波变换的区域中,将应用标准的浅水方程与非相分辨率波动方程式配方。新的GN组合电流和相位解析波方程将在狭窄区域中对波和电流动力学进行建模,其中近岸和/或结构引起的波浪破裂和升级发生。将研究与算法,耦合机制,物理和代码设计有关的研究问题。验证和验证练习将确认所选物理和算法的充分性,而代码性能研究将证明技术的效率。该项目汇集了数学,计算科学,浅水流体动力学,波浪物理学,沿海工程和风暴潮建模的专业知识。Broader的影响:该研究将提高预测波浪,水位以及近距离和诸如壁炉岛,沙丘,近海界线,内陆公路和范围内和兰斯等特征的浪潮,水位和电流的能力。这项工作的更广泛的影响包括改善:1)评估障碍或堤防背后的洪水风险; 2)评估沙丘,屏障岛,堤防,道路和铁路的实际退化; 3)计算波浪破裂区域后面的波浪升级; 4)确定沿海结构周围的非线性波气候,例如堤防,桥梁和建筑物;和5)预测风暴潮和波浪,以帮助计划撤离,评估沿海风险,设计堤防和封闭以及由联邦和州机构运输,包括FEMA,NOAA,USAI,USACE和美国海军在内的联邦和州机构。算法和计算基础设施在此项目下开发的问题可能适用于其他问题,包括其他问题,包括近乎沿海的海洋运营,包括运营机场,包括运输机场,包括高速公司,包括高速公路,包括高速公路,并适用生态,天气和气候变化以及湿地退化和重建。在更广泛的层面上,该项目要研究的计算技术适用于许多其他类型的可压缩和不可压缩的流动问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joannes Westerink其他文献

Modeling Hurricane Storm Surge along the Gulf Coast-Towards Petaflop Computations
墨西哥湾沿岸飓风风暴潮建模 - 迈向千万亿次计算
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joannes Westerink;John Atkiinson;Shintaro Bunya;et. al.
  • 通讯作者:
    et. al.
ModelingHurricane Storm Surge along the GulfCoast-Towards PetaflopComputations
墨西哥湾沿岸飓风风暴潮建模 - 迈向千万亿次计算
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joannes Westerink;John Atkiinson;Shintaro Bunya;et.al.
  • 通讯作者:
    et.al.

Joannes Westerink的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joannes Westerink', 18)}}的其他基金

Third International Workshop on Waves, Storm Surges, and Coastal Hazards, Incorporating the Seventeenth (17th) International Waves Workshop; Notre Dame, Indiana; October 1-6, 2023
第三次关于波浪、风暴潮和沿海灾害的国际研讨会,纳入第十七届(第十七届)国际波浪研讨会;
  • 批准号:
    2336773
  • 财政年份:
    2023
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
PREEVENTS Track 2: Collaborative Research: A Dynamic Unified Framework for Hurricane Storm Surge Analysis and Prediction Spanning across the Coastal Floodplain and Ocean
预防事件轨道 2:协作研究:跨沿海洪泛区和海洋的飓风风暴潮分析和预测的动态统一框架
  • 批准号:
    1855047
  • 财政年份:
    2019
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
SI2-SSI: Collaborative Research: STORM: A Scalable Toolkit for an Open Community Supporting Near Realtime High Resolution Coastal Modeling
SI2-SSI:协作研究:STORM:支持近实时高分辨率海岸建模的开放社区的可扩展工具包
  • 批准号:
    1339738
  • 财政年份:
    2014
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Inverse Sensitivity Analysis for Predictive Coastal Ocean Modeling
合作研究:用于预测沿海海洋建模的数据驱动逆敏感性分析
  • 批准号:
    1228212
  • 财政年份:
    2012
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Extension of the ADCIRC Coastal Circulation Model for Predicting Near Shore and Inner Shore Transport of Oil from the Horizon Oil Spill
RAPID:合作研究:ADCIRC 沿海环流模型的扩展,用于预测地平线漏油中的近岸和内岸石油输送
  • 批准号:
    1042304
  • 财政年份:
    2010
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF PetaApps Storm Surge Modeling on Petascale Computers
合作研究:NSF PetaApps 在 Petascale 计算机上进行风暴潮建模
  • 批准号:
    0746232
  • 财政年份:
    2007
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
CMG: Collaborative Research: Adaptive Numerical Methods for Shallow Water Circulation with Applications to Hurricane Storm Surge Modeling
CMG:合作研究:浅水循环自适应数值方法及其在飓风风暴潮建模中的应用
  • 批准号:
    0620696
  • 财政年份:
    2006
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Improved Computations for Convection Dominated Turbulent Flow Problems Using the Fractional Step Method
使用分数步法改进对流主导的湍流问题的计算
  • 批准号:
    8718436
  • 财政年份:
    1987
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1460319
  • 财政年份:
    2014
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025166
  • 财政年份:
    2010
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1025417
  • 财政年份:
    2010
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    1024936
  • 财政年份:
    2010
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
  • 批准号:
    1025453
  • 财政年份:
    2010
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了