CMG Collaborative Research: Non-assimilation Fusion of Data and Models

CMG协同研究:数据与模型的非同化融合

基本信息

  • 批准号:
    1025453
  • 负责人:
  • 金额:
    $ 26.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

The PIs will develop a methodology for improving estimate and prediction of the state of a dynamical system, with particular focus on analyzing ocean dynamics. The primary goals of this project are thus to develop innovative approaches for representation and manipulation of data uncertainty and model error using a fuzzy set formulation and to then apply these approaches for the data and model fusion formulated as the global optimization problem. Convenient and fast numerical algorithms will be developed to solve the problem using high-performance parallel computing. Such an approach differs from usual statistical estimates but with advantages and drawbacks of its own. The general mathematical theory will be applied to a long-standing but important problem of improving estimates and prediction of the state of the ocean. In particular, the proposed study targets a synthesis of submesoscale/mesoscale fronts, jets and eddies by fusing satellite observations, float and shipboard data of lower resolution, as well as ROMS simulation results for Central California. The theory should provide new tools to be applied in oceanography, meteorology, climatology, artificial intelligence, computer science, control engineering, decision theory, expert systems, operational research and pattern recognition. As the first step in using these tools for broader oceanography community goals, the fusion approach will be applied to different data bases to understand and quantify heat storage and carbon content of the North Atlantic in collaboration with scientists from Great Britain and Germany and to allow junior scientists to obtain excellent training and learning in cross disciplinary/multi-disciplinary areas of great scientific and practical importance. The PIs will address a long-standing but important problem involved with improving the estimation and prediction of the state of the ocean. The primary goals of this project are to develop an innovative approach for representation and manipulation of uncertainty coming from a wide variety of sources such as sensor outputs, model outputs, aggregating expert opinions as well as merging different databases and data even when distinct pieces of information are contradictory, and to suggest methods to fuse this information in decision making goals. The study will provide new mathematical theory and tools relevant for this problem, but also for more general applications in oceanography, meteorology and climatology. Mathematically the approach uses a fuzzy set formulation which originated in pure mathematics and which will be adapted for representing and manipulating data uncertainty and ocean model error. Results of the work will advance development of new forecast metrics in terms of fuzzy sets as well as new methods for quantification of model predictability through data-model and model-model comparisons at weather and climatic scales. As the first step in using these tools for broader oceanography community goals, the approach will be applied to different data bases which relate to quantifying heat storage and carbon content of the North Atlantic. The PIs will collaborate with scientists from Great Britain and Germany. Junior scientists involved in the project will obtain excellent training and learning in cross disciplinary/multi-disciplinary areas of great scientific and practical importance.
PI 将开发一种方法来改进动力系统状态的估计和预测,特别关注分析海洋动力学。因此,该项目的主要目标是开发使用模糊集公式表示和操纵数据不确定性和模型误差的创新方法,然后将这些方法应用于制定为全局优化问题的数据和模型融合。将开发方便、快速的数值算法,利用高性能并行计算来解决该问题。这种方法与通常的统计估计不同,但有其自身的优点和缺点。 一般数学理论将应用于改善海洋状况的估计和预测这一长期存在但重要的问题。特别是,拟议的研究目标是通过融合卫星观测、较低分辨率的浮标和船载数据以及加利福尼亚州中部的 ROMS 模拟结果来综合亚中尺度/中尺度锋面、喷流和涡流。 该理论应该为海洋学、气象学、气候学、人工智能、计算机科学、控制工程、决策理论、专家系统、运筹学和模式识别等领域的应用提供新的工具。 作为使用这些工具实现更广泛的海洋学界目标的第一步,融合方法将应用于不同的数据库,以与英国和德国的科学家合作了解和量化北大西洋的热储存和碳含量,并允许初级人员科学家在具有重大科学和实践意义的跨学科/多学科领域获得优秀的培训和学习。 这些PI将解决一个长期存在但重要的问题,涉及改进海洋状况的估计和预测。该项目的主要目标是开发一种创新方法来表示和操纵来自各种来源的不确定性,例如传感器输出、模型输出、汇总专家意见以及合并不同的数据库和数据,即使信息片段不同是矛盾的,并提出将这些信息融合到决策目标中的方法。该研究将为解决这一问题提供新的数学理论和工具,同时也为海洋学、气象学和气候学中更广泛的应用提供新的数学理论和工具。在数学上,该方法使用起源于纯数学的模糊集公式,适用于表示和操纵数据不确定性和海洋模型误差。这项工作的结果将推动模糊集方面的新预测指标的开发,以及通过天气和气候尺度的数据模型和模型模型比较来量化模型可预测性的新方法。作为使用这些工具实现更广泛的海洋学界目标的第一步,该方法将应用于与量化北大西洋热储存和碳含量相关的不同数据库。 PI 将与来自英国和德国的科学家合作。参与该项目的青年科学家将在具有重大科学和实践意义的跨学科/多学科领域获得出色的培训和学习。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Piterbarg其他文献

Leonid Piterbarg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Piterbarg', 18)}}的其他基金

Collaborative Research: CMG: Estimation of Ocean Currents and Wave-Eddy Turbulence from Float Observations
合作研究:CMG:根据浮标观测估计洋流和波涡湍流
  • 批准号:
    0530893
  • 财政年份:
    2005
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Turkey Cooperative Research: Stochastic Modeling of Turbulent Flows for the Prediction of Lagrangian Trajectories in the Ocean
合作研究:美国-土耳其合作研究:用于预测海洋拉格朗日轨迹的湍流随机建模
  • 批准号:
    0352448
  • 财政年份:
    2004
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1460319
  • 财政年份:
    2014
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025166
  • 财政年份:
    2010
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1025417
  • 财政年份:
    2010
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    1024936
  • 财政年份:
    2010
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Probabilistic Stratigraphic Alignment and Dating of Paleoclimate Data
CMG 合作研究:概率地层排列和古气候数据测年
  • 批准号:
    1025438
  • 财政年份:
    2010
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了