CIF: Small: Learning and herding in complex systems
CIF:小型:复杂系统中的学习和放牧
基本信息
- 批准号:1018323
- 负责人:
- 金额:$ 47.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A complex system is often defined as a system composed of interconnected parts whose properties cannot be predicted from the properties of its individual components. The investigator studies systems composed of many interacting agents that are not controlled by designated controlling agents and are self-organized. The agents are autonomous and have only local views of their system. They are endowed with the ability to learn from received signals and they share their knowledge with their neighbors by communicating it with agreed languages and rules. A typical feature of such systems is their tendency to display emergent behavior. An important instance of emergent behavior is the phenomenon of herding. Herding is a process where agents in a group ignore their own signals about the state of nature and follow the actions of their neighbors. The research is on the development of a methodology for understanding the interplay between learning and herding in complex systems.The aim of this work is to study the emergence of herding in complex systems with distributed signal processing. Emergence of herding is defined in a mathematically precise way so that it can be detected in a meaningful way. The agents of the system are rational, i.e., they employ Bayesian learning. The main objective is to understand the emergence of herding in multi-agent systems which is due to diffusion of system knowledge through interactions of received signals, perceived actions of neighboring agents, and learning. Various models of sharing information are studied and scenarios where herding readily arises are identified. Improved methods for efficient diffusion of knowledge in multi-agent systems are developed and ways of preventing adverse herding are sought. At the recommended level of support, the PI will make every attempt to meet the original scope and level of effort of the project.
复杂的系统通常定义为由互连部分组成的系统,其属性无法从其各个组件的属性中预测。研究者的研究系统由许多不受指定控制剂控制的相互作用剂组成,并且是自组织的。代理人是自主的,只有对其系统的本地观点。 他们具有从收到的信号中学习的能力,并通过与邻居与商定的语言和规则进行交流,与邻居分享他们的知识。 这种系统的典型特征是它们倾向于显示出紧急行为。新兴行为的一个重要实例是放牧的现象。放牧是一个小组中的特工忽略自己关于自然状态的信号的过程,并遵循邻居的行动。这项研究是关于理解复杂系统学习与放牧之间相互作用的方法的发展。这项工作的目的是研究具有分布式信号处理的复杂系统中放牧的出现。放牧的出现以数学精确的方式定义,以便以有意义的方式检测到它。 系统的代理是理性的,即他们采用贝叶斯学习。主要目的是了解多代理系统中放牧的出现,这是由于系统知识通过接收信号的相互作用,邻近代理的感知行动和学习而引起的。研究了各种共享信息的模型,并确定了很容易出现放牧的场景。开发了改进的方法,以有效地扩散知识在多代理系统中,并寻求防止不良放牧的方法。在建议的支持水平上,PI将尽一切尝试满足项目的原始范围和努力水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Petar Djuric其他文献
Antidepressant Effects of ECT may be related to Hippocampal Neurogenesis
- DOI:10.1016/j.brs.2015.01.35410.1016/j.brs.2015.01.354
- 发表时间:2015-03-012015-03-01
- 期刊:
- 影响因子:
- 作者:Colleen Loo;Narcis Cardoner;Harry Hallock;Jesus Pujol;Christos Pantelis;Dennis Velakoulis;Murat Yucel;Perminder Sachdev;Oren Contreras-Rodriguez;Mikel Urretavizcaya;Jose Menchon;Chao Suo;Petar Djuric;Mirjana Maletic-Savatic;Michael ValenzuelaColleen Loo;Narcis Cardoner;Harry Hallock;Jesus Pujol;Christos Pantelis;Dennis Velakoulis;Murat Yucel;Perminder Sachdev;Oren Contreras-Rodriguez;Mikel Urretavizcaya;Jose Menchon;Chao Suo;Petar Djuric;Mirjana Maletic-Savatic;Michael Valenzuela
- 通讯作者:Michael ValenzuelaMichael Valenzuela
共 1 条
- 1
Petar Djuric的其他基金
CCF: Medium: Inference with dynamic deep probabilistic models
CCF:中:使用动态深度概率模型进行推理
- 批准号:22125062212506
- 财政年份:2022
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Continuing GrantContinuing Grant
CPS: Medium: Collaborative Research: Scalable Intelligent Backscatter-Based RF Sensor Network for Self-Diagnosis of Structures
CPS:中:协作研究:用于结构自诊断的可扩展智能反向散射射频传感器网络
- 批准号:20388012038801
- 财政年份:2021
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Continuing GrantContinuing Grant
Collaborative proposal: GCR: In Search for the Interactions that Create Consciousness
合作提案:GCR:寻找创造意识的互动
- 批准号:20210022021002
- 财政年份:2020
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Continuing GrantContinuing Grant
CIF: Small: Dynamic Networks: Learning, Inference, and Prediction with Nonparametric Bayesian Methods
CIF:小型:动态网络:使用非参数贝叶斯方法进行学习、推理和预测
- 批准号:16189991618999
- 财政年份:2016
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
Travel Support for Student Participation in the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
为学生参加 2014 年 IEEE 声学、语音和信号处理国际会议提供差旅支持
- 批准号:14197421419742
- 财政年份:2014
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
CIF: Small: Belief Evolutions in Networks of Bayesian Agents
CIF:小:贝叶斯代理网络的信念演变
- 批准号:13206261320626
- 财政年份:2013
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
EAGER: RFID Sense-a-Tags for the Internet of Things
EAGER:物联网的 RFID 传感标签
- 批准号:13468541346854
- 财政年份:2013
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
SBIR Phase I: An enhanced UHD RFID system for warehouse management
SBIR 第一阶段:用于仓库管理的增强型 UHD RFID 系统
- 批准号:09127740912774
- 财政年份:2009
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
Theory of generalized particle filtering
广义粒子过滤理论
- 批准号:05152460515246
- 财政年份:2005
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
ITR: Optimization of Reconfigurable Architectures for Efficient Implementation of Particle Filters
ITR:优化可重构架构以高效实现粒子滤波器
- 批准号:02200110220011
- 财政年份:2002
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于深度学习的小样本侧扫声纳小目标探测
- 批准号:42374050
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于图表示深度学习的全新小分子先导化合物筛选方法研究
- 批准号:62372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
不平衡数据下基于多源域迁移学习的小微企业信用风险评估研究
- 批准号:72301093
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
- 批准号:82371994
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于无监督深度学习的复材小尺寸缺陷热成像表征方法研究
- 批准号:62301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:23435992343599
- 财政年份:2024
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:23436002343600
- 财政年份:2024
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:23315902331590
- 财政年份:2024
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:24136222413622
- 财政年份:2024
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:23413592341359
- 财政年份:2024
- 资助金额:$ 47.02万$ 47.02万
- 项目类别:Standard GrantStandard Grant