CDS&E: Enabling Time-critical Decision-support for Disaster Response and Structural Engineering through Automated Visual Data Analytics

CDS

基本信息

  • 批准号:
    1608762
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

After a disaster, teams of trained engineers are charged with the task of collecting perishable data. These building reconnaissance teams collect data and information from the buildings that experienced the disaster, including photographs and measurements in the region. This information is collected to better understand the consequences of these events, and to improve the design of future structures. An enormous amount of images and videos is generated in just a few days, and to gather the most critical information in the time allowed, the engineers on these teams must quickly make daily decisions on where and what data to collect to achieve their mission. This research, which harnesses powerful computer vision methods to address real world civil engineering problems, aims to develop efficient methods to analyze and organize the collected images in the field, thereby enabling teams to collect the most useful data for building resilient communities worldwide. The project will leverage decades of experience in field missions from project researchers and domestic and international collaborators. A diverse set of students will be engaged in interdisciplinary research with international opportunities.The application of computer vision methods to address disaster response and structural engineering problems is not simple or straightforward. This project will systematically build the knowledge needed for their successful implementation in time-critical situations. Engineers with significant field-mission experience will annotate images. These records will provide the basis for determining the visual contents needed to make decisions in the field and how the contents are spatially interconnected in the images. This forms the foundation for determining the prior knowledge that can and must be included in the deep neural network structures to facilitate rapid decision-making in the field. To quantitatively evaluate the approach, a reconnaissance testbed will be established using a diverse set of images from past data collection missions. The computational time and accuracy will be measured and documented to establish a detailed profile of the classification results. This knowledge will enable the team collecting data during a reconnaissance mission to maximize the value of the data they collect by ensuring that they can successfully perform a given task, in a certain amount of time, applied to a suite of images. This capability will provide the evidence on which to base recommendations for further investigations and/or changes to design guidelines.
灾难发生后,训练有素的工程师团队负责收集易腐烂的数据。这些建筑勘察队从遭受灾难的建筑收集数据和信息,包括该地区的照片和测量结果。收集这些信息是为了更好地了解这些事件的后果,并改进未来结构的设计。短短几天内就会生成大量图像和视频,为了在允许的时间内收集最关键的信息,这些团队的工程师必须快速做出日常决策,确定在何处收集哪些数据以实现其任务。这项研究利用强大的计算机视觉方法来解决现实世界的土木工程问题,旨在开发有效的方法来分析和组织现场收集的图像,从而使团队能够收集最有用的数据,以在全球范围内建设有弹性的社区。该项目将利用项目研究人员和国内外合作者数十年的实地任务经验。各种各样的学生将通过国际机会参与跨学科研究。应用计算机视觉方法来解决灾难响应和结构工程问题并不简单或直截了当。该项目将系统地构建在时间紧迫的情况下成功实施所需的知识。具有丰富现场任务经验的工程师将对图像进行注释。这些记录将为确定现场决策所需的视觉内容以及这些内容如何在图像中空间互连提供基础。这构成了确定先验知识的基础,这些先验知识可以而且必须包含在深度神经网络结构中,以促进该领域的快速决策。为了定量评估该方法,将使用过去数据收集任务中的一组不同图像建立侦察测试台。将测量并记录计算时间和准确性,以建立分类结果的详细概况。这些知识将使在侦察任务期间收集数据的团队能够确保他们能够在一定时间内成功执行应用于一组图像的给定任务,从而最大限度地发挥他们收集的数据的价值。此功能将为进一步调查和/或更改设计指南的建议提供依据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shirley Dyke其他文献

磁流变阻尼器的半主动控制及实时混合模拟试验研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    李歆;吕西林;Shirley Dyke
  • 通讯作者:
    Shirley Dyke
Damage Detection and Correlation-Based Localization Using Wireless Mote Sensors
使用无线微粒传感器进行损坏检测和基于相关性的定位

Shirley Dyke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shirley Dyke', 18)}}的其他基金

IUCRC Planning Grant Purdue University: Center for Visual Structural Expertise for Resilience C-ViSER
IUCRC 规划拨款 普渡大学:复原力视觉结构专业知识中心 C-ViSER
  • 批准号:
    2310930
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
  • 批准号:
    2229136
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
  • 批准号:
    2229136
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Elements: Data: Integrating Human and Machine for Post-Disaster Visual Data Analytics: A Modern Media-Oriented Approach
要素:数据:整合人机进行灾后可视化数据分析:现代媒体导向方法
  • 批准号:
    1835473
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RCN: Research Network in Hybrid Simulation for Multi-Hazard Engineering
RCN:多灾害工程混合仿真研究网络
  • 批准号:
    1661621
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Active Citizen Engagement to Enable Lifecycle Management of Infrastructure Systems
EAGER:积极的公民参与以实现基础设施系统的生命周期管理
  • 批准号:
    1645047
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSI: Empowering the Scientific Community with Streaming Data Middleware: Software Integration into Complex Science Environments
合作研究:SI2-SSI:通过流数据中间件为科学界赋能:软件集成到复杂的科学环境中
  • 批准号:
    1148255
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Cyber-Physical Co-Design of Wireless Monitoring and Control for Civil Infrastructure
CPS:媒介:协作研究:民用基础设施无线监测和控制的网络物理协同设计
  • 批准号:
    1035748
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop: International Workshop on Bio-inspired Methods and Large Scale Structural Monitoring; Tokyo, Japan; July 11-12, 2010
研讨会:仿生方法和大规模结构监测国际研讨会;
  • 批准号:
    1013175
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop/Collaborative Research: Vision 2020: An Open Space Technology Workshop on the Future of Earthquake Engineering; St. Louis, Missouri; January 2010
研讨会/合作研究:2020 年愿景:关于地震工程未来的开放空间技术研讨会;
  • 批准号:
    1004951
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
  • 批准号:
    2333120
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Enabling temporal and spatial restriction of MYT1L to identify molecular and postnatal circuit-level druggable targets
启用 MYT1L 的时间和空间限制来识别分子和出生后电路级可药物靶标
  • 批准号:
    10727978
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
  • 批准号:
    10697452
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
IND-enabling studies for cell therapy in Parkinson's disease
帕金森病细胞疗法的 IND 研究
  • 批准号:
    10760861
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
IND Enabling Non-Clinical Development of E1v1.11, a Morpholino Anti-Sense Oligonucleotide for the treatment of Spinal Muscular Atrophy.
IND 促进 E1v1.11 的非临床开发,E1v1.11 是一种用于治疗脊髓性肌萎缩症的吗啉代反义寡核苷酸。
  • 批准号:
    10569744
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了