Controlling Multiple Domain Walls in Ferromagnetic Nanowires with Magnetic Fields Studies by Micromagnetic Simulation
通过微磁模拟研究磁场控制铁磁纳米线中的多个畴壁
基本信息
- 批准号:1006947
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports computational and theoretical research on magnetization dynamics in magnetic nanostructures that is integrated with undergraduate student education.This project aims to advance the understanding of the interaction between the magnetic state and the surface of nanoscale structures, in particular, the dependence of domain wall positioning due to defects and other domain walls inside the material. Many magnetic devices for recording, sensing, and logic operations have been proposed in which the motion and control of a domain wall in a nanowire is a necessary operating condition. Most of these proposed devices require the control of individual domain walls in the presence of others within the same structure which necessitates the need for understanding the important interactions taking place.The project will engage undergraduate physics majors to participate in carrying out computer simulations. Students will benefit from the research experience, and in the process, add to their education in magnetic materials and nanotechnology.New theories and computer simulations will be employed to understand and predict the behavior for control of the multiple magnetic domains that exist in nanowires. This work employs micromagnetic simulation methods to help test and validate theories and aid in the interpretation of experiments on motion of the magnetic domains. The combination of nanometer spatial resolution with concurrent picosecond temporal resolution makes micromagnetic simulation an ideal method for studying the field driven domain wall motion in a magnetic nanowire. Dynamic observation of domain wall motion in a magnetic nanowire is difficult experimentally due to the small size of nanowires. Investigations will yield techniques to manipulate individual domain walls in the presence of other walls without the loss of critical information. Ultimately this work impacts the viability of the proposed devices and increases the base of knowledge about magnetization dynamics in nanostructured materials as opposed to bulk materials.NONTECHNICAL SUMMARYThis award supports computational and theoretical research that is well integrated with undergraduate student education. In this initiative research and education are developed to advance the theory of and the use of computers to simulate magnetic materials for nanoscale recording devices. Research efforts concentrate on understanding and advancing the manipulation of magnetic materials in nanostructures that are needed to understand and control magnetic devices and to promote their future use in high density and extremely fast magnetic recording devices.The project engages undergraduate physics majors to participate in carrying out the computer simulation and theoretical modeling. Students benefit from the research experience which in the process adds to their education in magnetic materials and nanotechnology. Some of the simpler interpretations and results are used for current topics in introductory courses to highlight the importance of classical physics in modern research and technology.New theories and computer simulations are employed to understand and reliably control the individual magnetic regions that can be created in nanodevices. The motion of these regions is being investigated by experiments and theories because of the potential application in extremely fast and small magnetic storage and sensing applications. This project employs computer simulation methods to help test and validate theories and aid in the interpretation of experiments on motion of the magnetic regions. Computer simulation is the only technique which gives simultaneous access to space and time in such small structures.The results of the proposed simulations are also important to understanding how to manipulate the location of a particular magnetic region in the nanowire which is then the basis for switching and logic. Reliable control of the magnetic region location and motion in magnetic nanodevices is essential to future generations of magnetic hard drives, as well as the logic devices. Manipulating the motion could lead to the creation of variable magnetic field sensors which depend on the magnetic domain location or number of domains.
技术摘要这一奖项支持与本科生教育整合的磁性纳米结构中磁化动力学的计算和理论研究。该项目旨在促进对磁性状态与纳米级结构表面之间相互作用的理解,以范围由于材料内部的缺陷和其他域壁,墙壁定位。 已经提出了许多用于记录,传感和逻辑操作的磁性设备,其中纳米线中域壁的运动和控制是必要的操作条件。 这些提议的设备中的大多数都需要在相同结构内的其他人面前控制各个领域墙,这需要了解发生重要的相互作用。该项目将参与本科生的专业,以参与进行计算机模拟。学生将从研究经验中受益,在此过程中,将采用新的理论和计算机模拟来理解和预测纳米线中存在的多个磁性域的行为。 这项工作采用微磁模拟方法来帮助测试和验证理论,并有助于解释磁性域运动的实验。 纳米空间分辨率与并发的皮秒时间分辨率的组合使微磁模拟成为研究磁性纳米线中现场驱动域壁运动的理想方法。由于纳米线的尺寸较小,在磁性纳米线中对域壁运动的动态观察很困难。 调查将产生在存在其他墙壁的情况下操纵各个域壁的技术,而不会丢失关键信息。 最终,这项工作影响了拟议的设备的可行性,并增加了纳米结构材料中有关磁化动力学的知识的基础,而不是散装材料。本科摘要摘要奖支持与学生教育不足的计算和理论研究。在这项计划中,开发了研究和教育,以推动计算机模拟纳米级记录设备的磁性材料的理论和使用。研究工作集中于理解和推进对纳米结构中磁性材料的操纵,这些纳米结构需要了解和控制磁性设备,并在高密度和极快的磁性记录设备中促进其未来使用。计算机模拟和理论建模。学生从研究经验中受益,这在此过程中增加了他们在磁性材料和纳米技术方面的教育。 一些更简单的解释和结果用于当前的入门课程中的主题,以强调古典物理在现代研究和技术中的重要性。新的理论和计算机模拟用于理解和可靠地控制可以在纳米电视中创建的单个磁性区域。这些区域的运动正在通过实验和理论进行研究,因为潜在的磁性存储和传感应用中的潜在应用。该项目采用计算机模拟方法来帮助测试和验证理论,并有助于解释磁性区域运动的实验。 计算机仿真是唯一可以同时访问如此小的结构中空间和时间的技术。拟议的仿真结果对于了解如何操纵纳米线中特定磁区域的位置也很重要,这是切换的基础和逻辑。可靠控制磁性区域的位置和磁性纳米台词中的运动对于后代的磁硬盘以及逻辑设备至关重要。操纵运动可能导致创建依赖磁场位置或域数量的可变磁场传感器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Kunz其他文献
Andrew Kunz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Kunz', 18)}}的其他基金
Micromagnetic Study of Controllable Domain Wall Motion in Ferromagnetic Nanowire Arrays via Transverse Magnetic Fields
通过横向磁场对铁磁纳米线阵列中可控畴壁运动的微磁研究
- 批准号:
1309094 - 财政年份:2013
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Studies of Magnetic Domain Wall Injection and Manipulation in a Magnetic Nanowire using Micromagnetic Simulation
使用微磁模拟研究磁纳米线中的磁畴壁注入和操纵
- 批准号:
0706194 - 财政年份:2007
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
相似国自然基金
基于多足DNA walker的三元光子晶体荧光传感阵列高通量检测多种食源性致病菌
- 批准号:82373633
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多种深度学习协同的北极海冰表面积雪深度遥感反演及其未来预估研究
- 批准号:42306201
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单颗粒-ICP-MS同时筛查检测多种循环肿瘤细胞的新方法研究
- 批准号:22304025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KDM6A-KMT2D-p300信号轴调节多种冠状病毒感染的分子机制
- 批准号:82372222
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
台风-海浪作用下考虑多种失效模式的浮式风力机结构可靠度研究
- 批准号:52308507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Resolving sources of heterogeneity and comorbidity in alcohol use disorder
解决酒精使用障碍的异质性和合并症的来源
- 批准号:
10783325 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Immune Modulation During Acute Lyme Disease Infection as the Result of Aberrant Immunoglobulin Glycosylation
异常免疫球蛋白糖基化导致急性莱姆病感染期间的免疫调节
- 批准号:
10726417 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Molecular analysis of glutamatergic neurons derived from iPSCs containing PPM1D truncating mutations found in Jansen de Vries Syndrome
Jansen de Vries 综合征中发现的含有 PPM1D 截短突变的 iPSC 衍生的谷氨酸能神经元的分子分析
- 批准号:
10573782 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Single domain antibodies for diagnosis and treatment of synucleinopathies
用于诊断和治疗突触核蛋白病的单域抗体
- 批准号:
10915130 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Chromatin regulators of stemness and therapy resistance in rhabdomyosarcoma
横纹肌肉瘤干性和治疗耐药性的染色质调节因子
- 批准号:
10622041 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别: