Cyclic Polymers: Topological Effects on Structure, Dynamics and Function

环状聚合物:拓扑对结构、动力学和功能的影响

基本信息

  • 批准号:
    1001903
  • 负责人:
  • 金额:
    $ 38.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-15 至 2013-11-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:Macromolecules are ubiquitous in modern technologies. Cyclic macromolecules have fascinated chemists, biologists and materials scientists for decades. While the properties of linear macromolecules are reasonably well understood, the properties of cyclic macromolecules remain mysterious. Constraining a large macromolecule into a ring has a significant influence its structure, dynamics and properties. Our ability to exploit these novel properties to generate new classes of materials is constrained both by our understanding and our inability to generate high molecular weight cyclic polymers with well defined structures in high purity. An innovative zwitterionic ring-expansion polymerization of lactones was discovered that provides an expedient synthesis of high molecular weight cyclic polyesters of well-defined molecular weight and narrow molecular weight distribution. This new synthetic strategy is fast, scalable and enables the generation of crystalline cyclic polyesters that span molecular weights where chain-entanglements begin to dominate their properties. Our experimental approach combines mechanistic studies of polymerization reactions with physical, rheological and spectroscopic investigations (wide- and small-angle X-ray and neutron scattering) to illuminate the role of molecular topology on macromolecular conformation, dynamics and properties. The gaps in our fundamental understanding of one of the simplest topological isomers of linear macromolecules are specific targets of the proposed studies. The experimental plan is designed to provide new knowledge to fill these gaps and to apply this knowledge for the development of new classes of high-performance thermoplastics, elastomers, and smart rheological fluids. While the focus is cyclic polyesters, the fundamental insights derived should be generalizable to any cyclic macromolecule, highlighting the broader intellectual impacts of the proposed studies NON-TECHNICAL SUMMARY: Plastics are ubiquitous modern materials, which impact every facet of our lives. Most plastics are derived from linear polymers, long linear chain macromolecules whose properties are reasonably well-understood. In contrast, cyclic polymers, large macromolecules closed into a ring exhibit unusual properties quite different from their linear analogs, but these differences are not well-understood. Our ability to exploit these novel properties to generate new classes of materials is limited both by our understanding and our inability to generate high molecular weight cyclic polymers with well defined structures in high purity. A new synthetic technique was developed that provides a means of generating cyclic polyesters. This new method will enable the preparation of new classes of well-defined cyclic polymers to investigate their properties and possible applications as new classes of polymeric materials. Studies will address how cyclic polymers crystallize into hard thermoplastics, how they flow when melted, and how the simple fact that their ends are connected into a ring changes their behavior. That so little is known about cyclic polymers implies that our understanding of polymers is far less sophisticated than previously imagined. That is, if connecting the ends of a large linear molecule changes its properties in ways that can't be explained, can it be said that we understand these large molecules? A major impact of the proposed studies will be new scientific understanding on the behavior of macromolecules constrained in rings and the degree to which these new insights challenge and augment our current understanding of macromolecular behavior. As new insights emerge, the novel properties of cyclic polymers can be harnessed to create new families of materials. Collaborative efforts with industrial scientists at IBM, physical scientists at NIST, and chemical engineers at Stanford will provide a unique training environment for the next generation of scientists who are able to make new classes of materials, study their properties and use these insights to generate new classes of polymeric materials.
技术摘要:大分子在现代技术中无处不在。 几十年来,环状大分子吸引了化学家,生物学家和材料科学家。 虽然对线性大分子的特性相当理解,但环状大分子的特性仍然是神秘的。 将大的大分子限制在环中具有重大影响其结构,动力学和性质。我们利用这些新型特性生成新的材料类别的能力受到我们的理解和无法产生高纯度结构良好的结构的高分子量循环聚合物的限制。 发现了内酯的创新性zwittionic环膨胀聚合聚合,该聚合提供了具有定义明确的分子量和狭窄的分子量分布的高分子量循环聚酯的权宜合成。 这种新的合成策略是快速,可扩展的,并且能够生成跨越分子量的晶体循环多植物,其中链 - 键入开始主导其性能。 我们的实验方法结合了聚合反应的机理研究与物理,流变和光谱研究(广角和小角度X射线和中子散射),以阐明分子拓扑在大分子构象,动力学,动力学和性质中的作用。 我们对线性大分子最简单的拓扑异构体之一的基本理解的差距是所提出的研究的特定目标。 实验计划旨在提供新的知识来填补这些空白,并将这些知识应用于新的高性能热塑性,弹性体和智能流变液的开发。虽然重点是循环多种植者,但得出的基本见解应推广到任何环状大分子,强调了拟议研究的非技术摘要的更广泛的智力影响:塑料是无处不在的现代材料,这会影响我们生活的每个方面。 大多数塑料源自线性聚合物,长线性链大分子,其特性相当理解。 相反,循环聚合物,大的大分子封闭在一个环中,表现出与线性类似物完全不同的异常特性,但是这些差异并没有得到很好的理解。 我们利用这些新型特性生成新材料的能力受到我们的理解和无法产生高纯度结构良好结构的高分子量循环聚合物的限制。开发了一种新的合成技术,该技术提供了一种生成循环多种植者的方法。 这种新方法将使新的定义循环聚合物的新类别制备,以研究其特性和可能作为新类别的聚合物材料的应用。 研究将介绍环状聚合物如何结晶成硬热塑料,它们在融化时如何流动以及如何将其末端连接到环的简单事实改变其行为。 关于环状聚合物的知之甚少,这意味着我们对聚合物的理解远没有以前想象的要复杂。 也就是说,如果连接大型线性分子的末端以无法解释的方式改变其性能,可以说我们了解这些大分子吗? 拟议的研究的主要影响将是对在环上约束的大分子的行为以及这些新见解挑战和增强我们当前对大分子行为的理解的程度的新科学理解。 随着新的见解的出现,可以利用循环聚合物的新型特性来创建新的材料系列。 与IBM的工业科学家,NIST的物理科学家以及斯坦福大学的化学工程师的合作努力将为下一代科学家提供独特的培训环境,这些科学家能够制造新的材料,研究其特性并使用这些见解来生成新的聚合物材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Waymouth其他文献

Robert Waymouth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Waymouth', 18)}}的其他基金

CAS: New Strategies for Electrocatalytic Reactions with Transition-Metal Hydrides
CAS:过渡金属氢化物电催化反应的新策略
  • 批准号:
    2101256
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
GOALI: CAS: Organocatalytic Reactions and Processes for Polymer Chemistry
目标:CAS:高分子化学的有机催化反应和过程
  • 批准号:
    2002933
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
New Approaches to Reversible Homogeneous Electrocatalysts
可逆均相电催化剂的新方法
  • 批准号:
    1565947
  • 财政年份:
    2016
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
GOALI: SusChem: Organocatalysis: A Platform for Sustainable Polymer Chemistry
目标:SusChem:有机催化:可持续聚合物化学平台
  • 批准号:
    1607092
  • 财政年份:
    2016
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Materials from High Molecular Weight Cyclic Polymers: Insights on Properties and Dynamics
高分子量环状聚合物材料:对性能和动力学的见解
  • 批准号:
    1407658
  • 财政年份:
    2014
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
GOALI, SusChem: Organocatalysis for Sustainable Polymer Chemistry
GOALI、SusChem:可持续聚合物化学的有机催化
  • 批准号:
    1306730
  • 财政年份:
    2013
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Transfer Hydrogenation: A Paradigm for Reversible Electrocatalysts
转移氢化:可逆电催化剂的范例
  • 批准号:
    1213403
  • 财政年份:
    2012
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
GOALI: Organocatalytic Polymerization: New Synthetic Methods for Polymer Chemistry
目标:有机催化聚合:高分子化学的新合成方法
  • 批准号:
    0957386
  • 财政年份:
    2010
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Can Catalysts Dance? Catalytic Choreography in Olefin Polymerization
催化剂能跳舞吗?
  • 批准号:
    0910729
  • 财政年份:
    2009
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
GOALI: Macromolecular Design with Organocatalysis
目标:有机催化大分子设计
  • 批准号:
    0645891
  • 财政年份:
    2007
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

聚合物基复合材料的微极弹性流体润滑机制及其柔性表面织构显式拓扑优化设计
  • 批准号:
    52375170
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
新型3D拓扑连接结构复合界面层增强柔性全聚合物太阳能电池机械稳定性的研究
  • 批准号:
    52303240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
聚合物网络拓扑结构与力学性能研究
  • 批准号:
    12372164
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
环链高级拓扑结构聚合物的可控聚合及其作为药物载体的体内外抗肿瘤性能研究
  • 批准号:
    82304433
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光热正交调控聚合物交联拓扑结构和链构象的方法设计和研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of self-healing semiconducting polymers by three-dimensional topological control
通过三维拓扑控制开发自修复半导体聚合物
  • 批准号:
    21KK0251
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Synthesis of topological helical polymers by precise polymerization and their characterization
拓扑螺旋聚合物的精确聚合合成及其表征
  • 批准号:
    21K04685
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of removable adhesive technology based on photo- and sound-triggered topological transformation of polymers
基于光和声触发聚合物拓扑转变的可移除粘合剂技术的开发
  • 批准号:
    21H01632
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RUI: Computational Methods for Measuring Topological Entanglement in Polymers
RUI:测量聚合物中拓扑纠缠的计算方法
  • 批准号:
    1913180
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Effects of addition of topological molecules on crystallization of polymers
拓扑分子的添加对聚合物结晶的影响
  • 批准号:
    15K05634
  • 财政年份:
    2015
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了