CAREER: Advanced Aerosol Synthesis of Metal Oxides for Photocatalytic Applications

职业:用于光催化应用的金属氧化物的先进气溶胶合成

基本信息

  • 批准号:
    0955028
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-02-15 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYOf fundamental importance is the discovery of new synthetic techniques that can be predictably manipulated to yield materials with defined and controllable features. While widely recognized as a powerful route to compositionally-complex inorganic solids, ultrasonic spray pyrolysis (USP), which is an aerosol-based synthetic technique that uses ultrasound for nebulization, has been under-realized as a synthetic route to architecturally-diverse particles. This CAREER project, supported by the Solid State and Materials Chemistry (SSMC) program will emphasize precursor design and decomposition behavior, as well as aerosol droplet phase and surface chemistry, to achieve architecturally-diverse particles with USP for photocatalytic applications including water splitting for solar H2 generation. Synthetic targets include i) highly-tailored titania photocatalysts in which porosity, crystal phase distribution, and surface decoration are controlled and ii) visible light driven O2-evolving photocatalysts with high active site dispersion. The former will be achieved by exploiting a newly discovered salt-assisted route to porous particles in which low-melting salt mixtures serve as a pore template and pre-formed titania colloids serve as the building blocks to the larger porous particles. The latter will be achieved by targeting valence band modified transition metal oxides. In this case, architecturally-diverse particles will be achieved with USP by deviating from convention and selecting precursors that yield templates and/or structure-directing agents via i) reaction (e.g., metathesis approaches) or ii) decomposition from single-source precursors. Given that the proposed research addresses such a timely issue, the development of sustainable energy sources, it is also of utmost importance that considerable effort be spent educating the community about it. To this aim, an Energy Ambassadors' Program is proposed in which undergraduates, with guidance from senior laboratory members, return to their high schools to discuss their research through an engaging demonstration.NON-TECHNICAL SUMMARYSubstantial resources are being directed toward the development of alternative energy platforms in attempts to minimize the potentially catastrophic effects associated with the burning of fossil fuels. Given that the sun provides the Earth with 120,000 trillion watts (TW) of energy, solar energy conversion represents the most viable means of sustainably producing 13 TW, which is consistent with global human demand. The proposed research aims to develop new materials for harnessing the energy of the sun to split water into hydrogen (H2) and oxygen (O2), with H2 representing a clean fuel that does not emit greenhouse gases or other pollutants upon use. The new materials will be prepared by an aerosol-based synthetic approach, with an emphasis on discovering new ways in which the architecture and shape of the resulting particles can be controlled by producing structure-directing agents using chemical methods. Controlling the shape and architecture of the prepared particles potentially provides a way in which the desirable features of a material can be enhanced selectively, thus maximizing their light harvesting properties and surface reactivity. Given that the proposed research addresses such a timely issue, it is also important that effort be spent educating the community about solar energy science. Thus, an Energy Ambassadors' Program is proposed in which undergraduates, with guidance from senior laboratory members, return to their high schools to discuss their research through an engaging demonstration.
基本重要性的技术摘要是发现了新的合成技术,可以预见,这些技术可以被操纵以产生具有定义和可控特征的材料。虽然广泛认为是构图复合无机固体的强大途径,但超声喷雾热解(USP)是一种基于气溶胶的合成技术,它使用超声进行雾化,但已被视为用于建筑型多样性颗粒的合成途径。在固态和材料化学(SSMC)计划的支持下,该职业项目将强调前体设计和分解行为以及气溶胶液滴相和表面化学,以实现具有用于光催化应用的建筑多样性颗粒,包括用于太阳能H2生成的水分。 合成靶标包括i)高量化的二氧化钛光催化剂,其中控制孔隙度,晶体相分布和表面装饰,ii)可见的光驱动的O2驱动的O2驱动的O2驱动的光催化剂具有高活性位点分散体。前者将通过利用新发现的盐辅助途径到多孔颗粒来实现,其中低融化的盐混合物用作孔模板,并预先形成的二氧化钛胶体作为较大多孔颗粒的组成部分。 后者将通过靶向价带修改的过渡金属氧化物来实现。 在这种情况下,通过偏离惯例并选择通过i)反应(例如,元理性方法)或ii)从单一源前体中分解来实现建筑多样的粒子。 鉴于拟议的研究解决了这一及时的问题,即可持续能源的发展,也至关重要的是要花费大量精力来教育社区。 为此,提出了一项能源大使的计划,在该计划中,在高级实验室成员的指导下,本科生返回高中,通过引人入胜的演示来讨论他们的研究。Non-Technical-technical SummarySbstantial资源是针对替代能源平台开发的,试图将潜在灾难性的灾难性与与燃烧的效应相关,以最大程度地减少与燃烧的效应相关联。 鉴于太阳为地球提供了120,000万亿瓦(TW)的能源,太阳能转换代表了可持续生产13 TW的最可行的手段,这与全球人类需求一致。 拟议的研究旨在开发新的材料,以利用太阳的能量将水分成氢(H2)和氧气(O2),H2代表使用后不发出温室气体或其他污染物的干净燃料。 新材料将通过基于气溶胶的合成方法制备,重点是发现新方法可以通过使用化学方法来控制结构指导剂来控制所得颗粒的结构和形状。 控制制备颗粒的形状和结构有可能有选择地增强材料的理想特征,从而最大程度地提高其光收集特性和表面反应性。鉴于拟议的研究解决了这一及时的问题,因此要花费努力来教育社区有关太阳能科学的努力也很重要。 因此,提出了一项能源大使计划,在该计划中,在高级实验室成员的指导下,本科生返回高中,通过引人入胜的演示讨论他们的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sara Skrabalak其他文献

Sara Skrabalak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sara Skrabalak', 18)}}的其他基金

CCI Phase I: NSF Center for Single-Entity Nanochemistry and Nanocrystal Design
CCI 第一阶段:NSF 单一实体纳米化学和纳米晶体设计中心
  • 批准号:
    2221062
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Nanocrystal Conversion Pathways for the Synthesis of Multimetallic Nanostructures
用于合成多金属纳米结构的纳米晶体转化途径
  • 批准号:
    2203349
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Synthesis of New Intergrowth and Nanostructured Metal Oxyhalide Photocatalysts
新型共生纳米结构金属卤氧化物光催化剂的合成
  • 批准号:
    2113536
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Strategies toward Hierarchy and Compositional Complexity in Metal Nanocrystal Synthesis
金属纳米晶体合成中的层次结构和成分复杂性策略
  • 批准号:
    1904499
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Symmetry Making and Breaking in the Synthesis and Assembly of Stellated and Bimetallic Nanocrystals
星状和双金属纳米晶体的合成和组装中对称性的形成和破坏
  • 批准号:
    1602476
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Spray Synthesis of Shape-Defined Nanocrystals
喷雾合成定形纳米晶体
  • 批准号:
    1608711
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Seed-mediated co-reduction: a versatile route to architecturally-controlled bimetallic nanostructures
种子介导的共还原:结构控制双金属纳米结构的通用途径
  • 批准号:
    1306853
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of an X-ray Photoelectron Spectrometer for Research and Education
MRI:购买 X 射线光电子能谱仪用于研究和教育
  • 批准号:
    1126394
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新一代重要有机酸反式乌头酸的先进生物制造技术
  • 批准号:
    22338012
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
  • 批准号:
    12375328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
先进运行模式中稳态远轴内部输运垒的调控机理研究
  • 批准号:
    12375233
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Real-time mass spectrometry for advanced aerosol chemical characterisation
用于高级气溶胶化学表征的实时质谱分析
  • 批准号:
    LE230100008
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Development of Advanced Aerosol Instrumentation
先进气溶胶仪器的开发
  • 批准号:
    RGPIN-2020-03957
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Therapy for SARS-CoV-2 Virus Infection and Pathogenesis by Aerosol Delivery of Monoclonal Antibodies
通过单克隆抗体气溶胶递送治疗 SARS-CoV-2 病毒感染和发病机制的新疗法
  • 批准号:
    10400511
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
Development of Advanced Aerosol Instrumentation
先进气溶胶仪器的开发
  • 批准号:
    RGPIN-2020-03957
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Advanced Aerosol Instrumentation
先进气溶胶仪器的开发
  • 批准号:
    RGPIN-2020-03957
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了