CAREER: Advanced Aerosol Synthesis of Metal Oxides for Photocatalytic Applications
职业:用于光催化应用的金属氧化物的先进气溶胶合成
基本信息
- 批准号:0955028
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYOf fundamental importance is the discovery of new synthetic techniques that can be predictably manipulated to yield materials with defined and controllable features. While widely recognized as a powerful route to compositionally-complex inorganic solids, ultrasonic spray pyrolysis (USP), which is an aerosol-based synthetic technique that uses ultrasound for nebulization, has been under-realized as a synthetic route to architecturally-diverse particles. This CAREER project, supported by the Solid State and Materials Chemistry (SSMC) program will emphasize precursor design and decomposition behavior, as well as aerosol droplet phase and surface chemistry, to achieve architecturally-diverse particles with USP for photocatalytic applications including water splitting for solar H2 generation. Synthetic targets include i) highly-tailored titania photocatalysts in which porosity, crystal phase distribution, and surface decoration are controlled and ii) visible light driven O2-evolving photocatalysts with high active site dispersion. The former will be achieved by exploiting a newly discovered salt-assisted route to porous particles in which low-melting salt mixtures serve as a pore template and pre-formed titania colloids serve as the building blocks to the larger porous particles. The latter will be achieved by targeting valence band modified transition metal oxides. In this case, architecturally-diverse particles will be achieved with USP by deviating from convention and selecting precursors that yield templates and/or structure-directing agents via i) reaction (e.g., metathesis approaches) or ii) decomposition from single-source precursors. Given that the proposed research addresses such a timely issue, the development of sustainable energy sources, it is also of utmost importance that considerable effort be spent educating the community about it. To this aim, an Energy Ambassadors' Program is proposed in which undergraduates, with guidance from senior laboratory members, return to their high schools to discuss their research through an engaging demonstration.NON-TECHNICAL SUMMARYSubstantial resources are being directed toward the development of alternative energy platforms in attempts to minimize the potentially catastrophic effects associated with the burning of fossil fuels. Given that the sun provides the Earth with 120,000 trillion watts (TW) of energy, solar energy conversion represents the most viable means of sustainably producing 13 TW, which is consistent with global human demand. The proposed research aims to develop new materials for harnessing the energy of the sun to split water into hydrogen (H2) and oxygen (O2), with H2 representing a clean fuel that does not emit greenhouse gases or other pollutants upon use. The new materials will be prepared by an aerosol-based synthetic approach, with an emphasis on discovering new ways in which the architecture and shape of the resulting particles can be controlled by producing structure-directing agents using chemical methods. Controlling the shape and architecture of the prepared particles potentially provides a way in which the desirable features of a material can be enhanced selectively, thus maximizing their light harvesting properties and surface reactivity. Given that the proposed research addresses such a timely issue, it is also important that effort be spent educating the community about solar energy science. Thus, an Energy Ambassadors' Program is proposed in which undergraduates, with guidance from senior laboratory members, return to their high schools to discuss their research through an engaging demonstration.
技术摘要最重要的是发现新的合成技术,可以通过可预测的操作来生产具有明确且可控特征的材料。虽然超声波喷雾热解 (USP) 被广泛认为是合成成分复杂的无机固体的有效途径,但超声波喷雾热解 (USP) 是一种基于气溶胶的合成技术,使用超声波进行雾化,但作为合成结构多样化颗粒的途径尚未得到充分认识。该职业项目由固态和材料化学 (SSMC) 项目支持,将强调前驱体设计和分解行为,以及气溶胶液滴相和表面化学,以通过 USP 实现结构多样化的颗粒,用于光催化应用,包括太阳能水分解H2一代。 合成目标包括 i) 高度定制的二氧化钛光催化剂,其中孔隙率、晶相分布和表面装饰受到控制,以及 ii) 具有高活性位点分散性的可见光驱动的析氧光催化剂。前者将通过利用新发现的盐辅助制备多孔颗粒的途径来实现,其中低熔点盐混合物作为孔模板,预成型的二氧化钛胶体作为较大多孔颗粒的构建块。 后者将通过针对价带改性过渡金属氧化物来实现。 在这种情况下,结构多样化的颗粒将通过 USP 实现,方法是偏离常规并选择通过 i) 反应(例如,复分解方法)或 ii) 单源前体分解产生模板和/或结构导向剂的前体。 鉴于拟议的研究解决了可持续能源开发这一紧迫问题,因此花费大量精力对社区进行相关教育也至关重要。 为此,提出了能源大使计划,其中本科生在高级实验室成员的指导下返回高中,通过引人入胜的演示讨论他们的研究。非技术摘要大量资源正在用于替代能源的开发平台试图最大限度地减少与化石燃料燃烧相关的潜在灾难性影响。 鉴于太阳为地球提供了 120,000 万亿瓦 (TW) 的能量,太阳能转换是可持续生产 13 TW 的最可行的手段,这与全球人类的需求是一致的。 拟议的研究旨在开发新材料,利用太阳的能量将水分解为氢气(H2)和氧气(O2),其中氢气是一种清洁燃料,在使用时不会排放温室气体或其他污染物。 新材料将通过基于气溶胶的合成方法制备,重点是发现新方法,通过使用化学方法生产结构导向剂来控制所得颗粒的结构和形状。 控制所制备颗粒的形状和结构可能提供一种可以选择性增强材料所需特性的方法,从而最大限度地提高其光捕获特性和表面反应性。鉴于拟议的研究解决了如此及时的问题,因此努力对社区进行太阳能科学教育也很重要。 因此,提出了能源大使计划,其中本科生在高级实验室成员的指导下返回高中,通过引人入胜的演示讨论他们的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Skrabalak其他文献
Sara Skrabalak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara Skrabalak', 18)}}的其他基金
CCI Phase I: NSF Center for Single-Entity Nanochemistry and Nanocrystal Design
CCI 第一阶段:NSF 单一实体纳米化学和纳米晶体设计中心
- 批准号:
2221062 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Nanocrystal Conversion Pathways for the Synthesis of Multimetallic Nanostructures
用于合成多金属纳米结构的纳米晶体转化途径
- 批准号:
2203349 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Synthesis of New Intergrowth and Nanostructured Metal Oxyhalide Photocatalysts
新型共生纳米结构金属卤氧化物光催化剂的合成
- 批准号:
2113536 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Strategies toward Hierarchy and Compositional Complexity in Metal Nanocrystal Synthesis
金属纳米晶体合成中的层次结构和成分复杂性策略
- 批准号:
1904499 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Symmetry Making and Breaking in the Synthesis and Assembly of Stellated and Bimetallic Nanocrystals
星状和双金属纳米晶体的合成和组装中对称性的形成和破坏
- 批准号:
1602476 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Spray Synthesis of Shape-Defined Nanocrystals
喷雾合成定形纳米晶体
- 批准号:
1608711 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Seed-mediated co-reduction: a versatile route to architecturally-controlled bimetallic nanostructures
种子介导的共还原:结构控制双金属纳米结构的通用途径
- 批准号:
1306853 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
MRI: Acquisition of an X-ray Photoelectron Spectrometer for Research and Education
MRI:购买 X 射线光电子能谱仪用于研究和教育
- 批准号:
1126394 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
不确定单机批调度及其结合先进过程控制(APC)在半导体制造中的应用
- 批准号:72301177
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
- 批准号:62371312
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于物理模型融合深度学习的先进合金极限条件应力应变行为预测
- 批准号:52311530082
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Real-time mass spectrometry for advanced aerosol chemical characterisation
用于高级气溶胶化学表征的实时质谱分析
- 批准号:
LE230100008 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Development of Advanced Aerosol Instrumentation
先进气溶胶仪器的开发
- 批准号:
RGPIN-2020-03957 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Novel Therapy for SARS-CoV-2 Virus Infection and Pathogenesis by Aerosol Delivery of Monoclonal Antibodies
通过单克隆抗体气溶胶递送治疗 SARS-CoV-2 病毒感染和发病机制的新疗法
- 批准号:
10400511 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Development of Advanced Aerosol Instrumentation
先进气溶胶仪器的开发
- 批准号:
RGPIN-2020-03957 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Development of Advanced Aerosol Instrumentation
先进气溶胶仪器的开发
- 批准号:
RGPIN-2020-03957 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual