EFRI-BSBA: Learning from Plants -- Biologically-Inspired Multi-Functional Adaptive Structural Systems
EFRI-BSBA:向植物学习——受生物启发的多功能自适应结构系统
基本信息
- 批准号:0937323
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EFRI-BSBA: Learning from Plants -- Bio-Inspired Multi-Functional Adaptive Structural Systems PI Name: Kon-Well WangInstitution: University of Michigan, Ann Arbor MI.Proposal No: 0937323The research project is a collaborative interdisciplinary study to create a transformative multifunctional adaptive engineering structure concept through investigating the characteristics of plants. The investigators propose to explore new bio-actuation/bio-sensing ideas building upon innovations inspired by the mechanical, chemical, and electrical properties of plant cells. It has been observed that plant nastic actuations (e.g., rapid plant motions of Venus Flytrap or Mimosa) occur due to directional changes in plant cell shape facilitated by internal hydrostatic pressure, achieving actuations with large force and stroke. It is also known that plants can adapt to the direction/magnitude of external loads and damage, and reconfigure or heal themselves via cell growth. The ability to concurrently achieve distributed large stroke/force actuation, significant property change, self-sensing, reconfiguration, and self-healing has long been the dream of the adaptive structures researchers. The bio-sensing/ actuation features of plants can provide engineers with valuable knowledge and opportunities for interdisciplinary intellectual advancements that could lead to a new paradigm of adaptive structures and impact the joint field of bioscience and engineering significantly. The intellectual merit of this project is that the multidisciplinary research team will push forward advancements in various disciplines at their interfaces (plant and cell biology, materials and manufacturing, chemical transport, mechatronics, and structural dynamics and controls) and utilize the synergy to create a significant leap in fundamental knowledge for future adaptive materials and structures. By physiological characterization of how plant cell wall organization influences cell shape changes during rapid plant motions, the team will investigate the wall fibrillar networks and the orientations of plant cells that can achieve the most effective nastic actions. Building upon and advancing from the investigators? study of the promising fluidic flexible matrix composite (F2MC) concept, F2MC cells will be created that emulate functions of plant cells based on our improved understanding of the cell wall response to pressure, loading, and damage. Advanced nanofiber networking capability will be explored for the F2MC materials. Inspired by the plant cell membrane transport phenomenon, a microstructure will be developed that generates pressure to actuate the F2MC cells, senses and regulates pressure, detects damage, and heals. Through structural analysis and control synthesis, F2MC cells will be assembled to form a hypercellular topology resembling a circulatory network for global actuation and structural control, energy harvesting, thermal management, and self healing. The outcome of this project is expected to impact the society broadly and significantly. The findings could become the building blocks of future mechanical, civil, transportation, and aerospace systems with enhanced functionality and performance. The next generation of air, marine, and land vehicles, intelligent machines, and smart infrastructure will benefit greatly from the knowledge discovery. The investigators will integrate the emerging frontier research with educational programs to achieve broad impact on learning at various levels, contributing to the workforce training on multidisciplinary systems crossing biology and engineering.
EFRI-BSBA:从植物中学习 - 生物启发的多功能自适应结构系统PI名称:Kon-Well Wanginstitution:密歇根大学,Ann Arbor Mi.Proposa.0937323研究项目是一项协作的互助研究项目通过研究植物的特征,适应性工程结构概念。 研究人员建议以受植物细胞的机械,化学和电气性能启发的创新为基础探索新的生物侵略/生物感应思想。 已经观察到,由于内部静水压力促进的植物细胞形状的方向变化,植物性的致动(例如,金星蝇或含羞草的快速植物运动)发生,以较大的力量和中风来实现作用。 还知道植物可以适应外部载荷和损害的方向/幅度,并通过细胞生长重新配置或修复自身。 长期以来,同时实现分布式大型中风/力驱动,重大的财产变化,自感应,重新配置和自我修复的能力长期以来一直是自适应结构研究人员的梦想。 植物的生物敏感/致动特征可以为工程师提供跨学科知识进步的宝贵知识和机会,这可能导致新的自适应结构范式,并影响生物科学和工程的联合领域。该项目的智力优点在于,多学科研究团队将在其界面(植物和细胞生物学,材料和制造,化学运输,机电一体化以及结构动力学和控制措施)上推动各种学科的进步,并创建协同作用对未来自适应材料和结构的基本知识的重大飞跃。 通过生理表征植物细胞壁组织如何影响快速植物运动期间细胞形状的变化,该团队将研究壁纤维网络和可以实现最有效的Nastic Cantion的植物细胞的方向。 在调查人员的基础上并前进?研究有希望的流体柔性基质复合材料(F2MC)概念,将创建F2MC细胞,以根据我们对细胞壁对压力,负载和损害的响应的理解的提高理解来模仿植物细胞的功能。 F2MC材料将探索先进的纳米纤维网络能力。 受植物细胞膜转运现象的启发,将开发出一个微观结构,该微观结构会产生压力来启动F2MC细胞,感官和调节压力,检测损伤并愈合。 通过结构分析和控制合成,将组装F2MC细胞,形成类似于用于全球驱动和结构控制,能量收集,热管理和自我康复的循环网络的高细胞拓扑。 预计该项目的结果将广泛而显着影响社会。 这些发现可能成为具有增强功能和性能的未来机械,民用,运输和航空系统的基础。 下一代的空气,海洋和陆地车辆,智能机器和智能基础设施将从知识发现中受益匪浅。 研究人员将将新兴的边境研究与教育计划融合在一起,以在各个层面上对学习产生广泛的影响,从而为跨越生物学和工程的多学科系统的劳动力培训做出了贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kon-Well Wang其他文献
Discriminative Transition Sequences of Origami Metamaterials for Mechanologic
用于力学的折纸超材料的判别转变序列
- DOI:
10.1002/aisy.202200146 - 发表时间:
2022-01 - 期刊:
- 影响因子:7.4
- 作者:
Zuolin Liu;Hongbin Fang;Jian Xu;Kon-Well Wang - 通讯作者:
Kon-Well Wang
Dynamic stability analysis of high speed axially moving bands with end curvatures
- DOI:
10.1115/1.2930156 - 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Kon-Well Wang - 通讯作者:
Kon-Well Wang
Kon-Well Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kon-Well Wang', 18)}}的其他基金
Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics
合作研究:软机器人的嵌入式机械智能
- 批准号:
2314560 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Harnessing Complex Dynamics of Coupled Mechanical-Electrical System for an Improved Vibration Energy Harvesting
合作研究:理解和利用耦合机电系统的复杂动力学以改进振动能量收集
- 批准号:
1661568 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: Frequency Selective Structures for High Sensitivity/High Resolution Damage Identification via Impediographic Tomography
合作研究:通过阻抗成像技术进行高灵敏度/高分辨率损伤识别的频率选择结构
- 批准号:
1232436 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
- 批准号:
0848166 - 财政年份:2008
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
- 批准号:
0529029 - 财政年份:2005
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
ITR: An Agent-Based Negotiation Framework for the Robust Design of Active-Passive Hybrid Piezoelectric Vibration Control Networks
ITR:基于代理的协商框架,用于主动-被动混合压电振动控制网络的鲁棒设计
- 批准号:
0218597 - 财政年份:2003
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Simultaneous Vibration Confinement and Disturbance Rejection Through Electromechanical Tailoring of Piezoeletric Networks
通过压电网络的机电定制同时限制振动和抑制干扰
- 批准号:
0099827 - 财政年份:2001
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
US-Japan Workshop on Bioinspired Sensing and Bioinspired Actuation (BSBA) Technologies; Hawaii; March 18 and 19, 2011
美日仿生传感和仿生驱动 (BSBA) 技术研讨会;
- 批准号:
1112579 - 财政年份:2011
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI BSBA: Complex microsystem networks inspired by internal insect physiology
EFRI BSBA:受昆虫内部生理学启发的复杂微系统网络
- 批准号:
0938047 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-BSBA:Bio-Inspired Arrays of Haircell Sensors for Artificial Glabrous and Hairy Skin
EFRI-BSBA:用于人造无毛和多毛皮肤的仿生毛细胞传感器阵列
- 批准号:
0938007 - 财政年份:2009
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-BSBA: Biology Inspired Intelligent Micro Optical Imaging Systems
EFRI-BSBA:受生物学启发的智能微光学成像系统
- 批准号:
0937847 - 财政年份:2009
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
- 批准号:
0937848 - 财政年份:2009
- 资助金额:
$ 200万 - 项目类别:
Standard Grant