EFRI BSBA: Complex microsystem networks inspired by internal insect physiology

EFRI BSBA:受昆虫内部生理学启发的复杂微系统网络

基本信息

项目摘要

AbstractThe objective of this research is to understand how insects produce and control internal flows and to use this knowledge to create novel, highly efficient, bio-inspired fluid-transport systems. Current approaches to flow delivery and regulation in complex microsystems rely on targeted actuation and active control. In contrast, insects have evolved over millions of years to efficiently manage flows using flexible tissues, simple actuation, and passive, distributed control built into the network itself. The approach combines synchrotron x-ray imaging of internal insect dynamics, material characterization of insect vessels, fluid mechanics modeling and experiments, and advanced micromechanical fabrication technology.The intellectual merit of the proposed research effort includes transformation of the accepted approach to fluid-based transport in small-scale systems, further development of advanced experimental and fabrication techniques, and fundamental advances in the understanding of insect physiology. The proposed research has the potential to change the paradigm for flow delivery and regulation in small-scale systems, leading to new bioengineered tissues and energy-efficient, biomedically-implantable microdevices. The broader impacts will include integrating the findings from this project into educational programs at the K-12 and university levels. New lessons that integrate biology and engineering will be developed with under-represented students in urban and rural classrooms. The broader public will also be educated through direct involvement with new television and film productions of National Geographic. Additionally, a deeper understanding of how insect respiration and circulation work will lead to novel mechanisms for targeted biocontrol, enabling economically significant advances in agricultural, residential, and commercial pest management.
摘要这项研究的目的是了解昆虫如何产生和控制内部流动,并利用这种知识来创建新颖,高效,受到生物启发的流体传输系统。 当前的复杂微型系统中流量输送和调节的方法依赖于靶向致动和主动控制。 相比之下,昆虫已经发展了数百万年的昆虫,以使用柔性组织,简单的驱动和被动的,分布式控制内置在网络本身中,以有效地管理流量。 该方法结合了内部昆虫动力学的同步X射线成像,昆虫血管的材料表征,流体力学建模和实验以及先进的微机械制造技术。拟议的研究工作努力的智力优点包括在小型实验和制造技术中的进一步发展,将公认方法转化为流体运输的方法,并理解了昆虫的进一步发展。拟议的研究有可能改变小型系统中流动递送和调节的范式,从而导致新的生物工程组织和能节能,生物医学上可植入的微型电视。更广泛的影响将包括将该项目的发现纳入K-12和大学级别的教育计划。 整合生物学和工程的新课程将与城市和农村教室中代表性不足的学生一起开发。 更广泛的公众还将通过直接参与国家地理的新电视和电影制作来教育。此外,对昆虫呼吸和循环工作的更深入的了解将导致针对靶向生物防治的新机制,从而在农业,住宅和商业害虫管理方面具有经济上的显着进步。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frequency-specific, valveless flow control in insect-mimetic microfluidic devices
  • DOI:
    10.1088/1748-3190/abe4bc
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chatterjee, Krishnashis;Graybill, Philip M.;Staples, Anne E.
  • 通讯作者:
    Staples, Anne E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Socha其他文献

John Socha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Socha', 18)}}的其他基金

A New Hypothesis for Cardio-respiratory Mechanics in Insects
昆虫心肺力学的新假说
  • 批准号:
    1558052
  • 财政年份:
    2016
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Continuing Grant
RET in Engineering and Computer Science Site: Biomechanics from molecular to organismal scales
工程和计算机科学领域的 RET 网站:从分子到有机体尺度的生物力学
  • 批准号:
    1301037
  • 财政年份:
    2014
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Standard Grant
CAREER: Gliding Flight in Snakes: How Wingless Gliders Produce Force, Maintain Stability, and Maneuver
职业:蛇的滑翔飞行:无翼滑翔机如何产生力量、保持稳定性和机动性
  • 批准号:
    1351322
  • 财政年份:
    2014
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Continuing Grant
IDBR: Instrument development for three-dimensional fluid flow measurements of freely-flying animals
IDBR:用于自由飞行动物三维流体流量测量的仪器开发
  • 批准号:
    1152304
  • 财政年份:
    2012
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Standard Grant

相似海外基金

US-Japan Workshop on Bioinspired Sensing and Bioinspired Actuation (BSBA) Technologies; Hawaii; March 18 and 19, 2011
美日仿生传感和仿生驱动 (BSBA) 技术研讨会;
  • 批准号:
    1112579
  • 财政年份:
    2011
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Standard Grant
EFRI-BSBA:Bio-Inspired Arrays of Haircell Sensors for Artificial Glabrous and Hairy Skin
EFRI-BSBA:用于人造无毛和多毛皮肤的仿生毛细胞传感器阵列
  • 批准号:
    0938007
  • 财政年份:
    2009
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Biology Inspired Intelligent Micro Optical Imaging Systems
EFRI-BSBA:受生物学启发的智能微光学成像系统
  • 批准号:
    0937847
  • 财政年份:
    2009
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Learning from Plants -- Biologically-Inspired Multi-Functional Adaptive Structural Systems
EFRI-BSBA:向植物学习——受生物启发的多功能自适应结构系统
  • 批准号:
    0937323
  • 财政年份:
    2009
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
  • 批准号:
    0937848
  • 财政年份:
    2009
  • 资助金额:
    $ 199.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了