Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics

合作研究:软机器人的嵌入式机械智能

基本信息

项目摘要

This collaborative Foundational Research in Robotics (FRR) project will create soft materials with integrated sensors, interconnections, logic circuits, and actuators. These materials will enable the development of soft robots with perception, processing, and responsiveness distributed throughout their structures. These capabilities will be demonstrated by a soft robotic platform that can recognize and sort simple objects by their shape, size, and weight, using only these novel materials and without requiring any additional sensing or computing. This soft material-based manipulator will be the first step towards a new class of soft robotic components that can coordinate and intelligently engage with objects in their environment, for a range of practical purposes. Such devices represent a major step for the field of soft robotics and will broadly advance the future of motion control systems, autonomous haptic devices, self-aware sensor-actuator networks, and more. Potential impacts may be felt in societally important application areas such as manufacturing, transportation, and biomedical devices. The research will be coupled with an extensive outreach, education, and mentoring program that integrates the research concepts into classroom and engagement activities among multiple diverse student groups.The research goal of this project is to establish a fundamental synthesis of material and functional components in soft matter to embody intelligence, endowing robots with new capabilities that will significantly enhance their autonomy as compared to the current systems that heavily depend on add-on hardware. The new system will require less electric power and have faster reactions and better survivability than current systems. This project will culminate in a soft robotic sorting manipulator that autonomously detects physical characteristics of items and positions those items into proximity with objects having similar features. This goal will be achieved by a novel integration of embedded mechano-intelligence and field-responsive polymers. Together, these constituents will process information regarding item shape and weight and will trigger reconfiguration of the manipulator so as to position the items into distinct categories. By requiring only a low-voltage input to function, the embedded mechano-intelligence employs only the necessary computational power and eliminates conventional controllers and failure-prone electrical wiring in soft materials. The field-responsive polymers will be used in conjunction with principles of elastic stability theory to minimize the actuating authority required to reconfigure the load-bearing manipulator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该机器人技术(FRR)项目的合作基础研究将与集成传感器,互连,逻辑电路和执行器创建软材料。这些材料将通过感知,加工和响应能力在其整个结构中分发。这些功能将通过一个软机器人平台来证明,该平台只能使用这些新颖的材料,而无需任何其他感应或计算,可以通过其形状,大小和重量来识别和对简单对象进行排序。这种基于材料的柔软的操纵器将是迈向新的软机器人组件的第一步,这些组件可以用于一系列实际目的,它们可以协调并智能地与环境中的物体互动。此类设备代表了软机器人技术领域的主要步骤,并将广泛推动运动控制系统,自主触觉设备,自我意识的传感器传感器网络等的未来。在社会上重要的应用领域(例如制造,运输和生物医学设备)中,可能会产生潜在的影响。这项研究将与广泛的外展,教育和指导计划相结合,将研究概念整合到多种多样的学生群体之间。该项目的研究目标是建立对软物质中材料和功能组成的基本综合,以将智能的智能体现,从而使机器人与新的能力相比,将其依赖于当前的系统依赖于当前的系统。 与当前系统相比,新系统将需要更少的电力,并具有更快的反应和更好的生存能力。 该项目将以软机器人分类操纵器的形式达到高潮,该操作器自主检测物品的物理特征,并将这些项目与具有相似特征的对象定位在附近。该目标将通过嵌入的机械智能和田间响应聚合物的新型整合来实现。这些成分将共同处理有关项目形状和重量的信息,并将触发操纵器的重新配置,从而将项目定位为不同的类别。通过仅需要低压输入才能功能,嵌入式的机械智能仅采用必要的计算功率,并消除了柔软材料中的常规控制器和容易失败的电线。现场响应性聚合物将与弹性稳定理论的原理结合使用,以最大程度地减少重新配置负载操纵器所需的执行权限。该奖项反映了NSF的法定任务,并认为通过使用基金会的知识分子和更广泛的影响来审查Criteria的评估,并被视为值得通过评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kon-Well Wang其他文献

Discriminative Transition Sequences of Origami Metamaterials for Mechanologic
用于力学的折纸超材料的判别转变序列
  • DOI:
    10.1002/aisy.202200146
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zuolin Liu;Hongbin Fang;Jian Xu;Kon-Well Wang
  • 通讯作者:
    Kon-Well Wang
Dynamic stability analysis of high speed axially moving bands with end curvatures

Kon-Well Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kon-Well Wang', 18)}}的其他基金

Collaborative Research: Understanding and Harnessing Complex Dynamics of Coupled Mechanical-Electrical System for an Improved Vibration Energy Harvesting
合作研究:理解和利用耦合机电系统的复杂动力学以改进振动能量收集
  • 批准号:
    1661568
  • 财政年份:
    2017
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Frequency Selective Structures for High Sensitivity/High Resolution Damage Identification via Impediographic Tomography
合作研究:通过阻抗成像技术进行高灵敏度/高分辨率损伤识别的频率选择结构
  • 批准号:
    1232436
  • 财政年份:
    2012
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Learning from Plants -- Biologically-Inspired Multi-Functional Adaptive Structural Systems
EFRI-BSBA:向植物学习——受生物启发的多功能自适应结构系统
  • 批准号:
    0937323
  • 财政年份:
    2009
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
  • 批准号:
    0848166
  • 财政年份:
    2008
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
  • 批准号:
    0529029
  • 财政年份:
    2005
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
ITR: An Agent-Based Negotiation Framework for the Robust Design of Active-Passive Hybrid Piezoelectric Vibration Control Networks
ITR:基于代理的协商框架,用于主动-被动混合压电振动控制网络的鲁棒设计
  • 批准号:
    0218597
  • 财政年份:
    2003
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Continuing Grant
Simultaneous Vibration Confinement and Disturbance Rejection Through Electromechanical Tailoring of Piezoeletric Networks
通过压电网络的机电定制同时限制振动和抑制干扰
  • 批准号:
    0099827
  • 财政年份:
    2001
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant

相似国自然基金

热力学表述的二维异质界面分子插层嵌入和微结构演化的分子模拟研究
  • 批准号:
    22378185
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
  • 批准号:
    12301447
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字生态下隐形冠军企业跨越数字鸿沟的嵌入模式研究
  • 批准号:
    72302071
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于粒子散射层析重构与嵌入物理约束神经网络的三维湍流场即时重建方法研究
  • 批准号:
    52376160
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于混沌加密与RD-CNN知识嵌入的调频引信多域自适应抗干扰方法研究
  • 批准号:
    62301051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
  • 批准号:
    2312676
  • 财政年份:
    2023
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
  • 批准号:
    2228033
  • 财政年份:
    2023
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326169
  • 财政年份:
    2023
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics
合作研究:软机器人的嵌入式机械智能
  • 批准号:
    2314559
  • 财政年份:
    2023
  • 资助金额:
    $ 45.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了