Robust Theoretical Frameworks for Ecological Dynamics Subject to Stoichiometric Constraints
受化学计量约束的生态动力学的稳健理论框架
基本信息
- 批准号:0920744
- 负责人:
- 金额:$ 49.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Organisms are composed of chemical elements such as carbon, hydrogen, oxygen, nitrogen, and phosphorus. Research in the area known as ecological stoichiometry (ES) has highlighted the ecological importance of the relative abundance of chemical constituents, known to vary considerably among species and across trophic levels. ES deals with how the balance of energy and elements affect and are affected by organisms and their interactions in ecosystems. It has proven to be an important new lens through which to view and understand ecological interactions and has gained momentum by explicitly linking the elemental physiology of organisms to their food web interactions and ecosystem function. Thus, ES theory covers multiple biological scales and allows, via rigid physical and chemical constraints, the construction of robust mechanistic and predictive mathematical models. While biology has a research tradition that is empirical in nature and often only weakly connected to formal quantitative analyses, mathematical and theoretical biology on the other hand has had a research agenda that has often been somewhat distanced from mainstream empirical biology. There is not enough effort and attention on marrying empirical results with theoretical findings. The investigators will extend and generalize existing well-received stoichiometry-based mathematical models to encompass a broader range of ecological situations, including cell quota dynamics, consumer age- or size-structures, variable consumer stoichiometry, and delayed nutrient cycling. Once such a generalized theoretical framework is established, the investigators will construct and evaluate models inspired by recent empirical discoveries in ES, including one considering the effects on consumer dynamics of not only insufficient food nutrient content but also of excess food nutrient content, and another considering the effects of stoichiometric dietary mixing. Finally, the investigators will challenge these parameterized stoichiometric models against observed population growth dynamics qualitatively and quantitatively. In doing so, the investigators hope to achieve a far-reaching synthesis between model and experiment in the form of new theoretical applications that may allow for direct and quantitative predictions of the effects of stoichiometric constraints on ecosystem processes. The models the investigators will investigate may motivate challenging but tractable problems in areas of qualitative and computational studies of nonlinear differential equations and delay differential equations. This project will have a broad impact in both local and global environs. The biological findings of this project may have a number of practical applications to issues such as eutrophication, biofuel production, global change, and biodiversity. Its theoretical outcomes will provide a solid and user-friendly framework to build mathematical models that allow quantitative prediction of ecological interactions. Moreover, it will find many ready applications in cancer and other within host diseases dynamics and treatment modeling since one can view cancer cells and pathogens as invading species in a host ecosystem. The investigators' collaborative efforts will provide undergraduate and graduate students of diverse ethnic/racial backgrounds with first-hand educational experience in cross-disciplinary communication and exploration. Finally, the investigators are partnering with Arizona State University's School of Life Sciences award-winning Ask-A-Biologist program to develop articles and virtual experiments related to this project to enhance middle- and high school student learning of biological and mathematical concepts.
生物由化学元素(例如碳,氢,氧,氮和磷)组成。该地区称为生态化学计量学(ES)的研究强调了化学成分相对丰度的生态重要性,化学成分的相对丰度在物种之间以及跨营养水平之间差异很大。 ES涉及能量和元素的平衡如何影响生物及其在生态系统中的相互作用。事实证明,它是一个重要的新镜头,可以通过将生物的元素生理与其食物网络相互作用和生态系统功能明确联系在一起,从而通过它来查看和理解生态相互作用并获得了动力。因此,ES理论涵盖了多个生物学量表,并允许通过刚性的物理和化学限制来构建可靠的机械和预测性数学模型。尽管生物学的研究传统本质上是经验性的,而且通常仅与形式定量分析有弱相关,但另一方面,数学和理论生物学的研究议程通常与主流经验生物学有些远。将经验结果与理论发现结合在一起没有足够的努力和关注。研究人员将扩展并推广现有的基于化学计量的数学模型,以涵盖更广泛的生态情况,包括细胞配额动态,消费者年龄或尺寸结构,可变的消费者化学计量和延迟营养循环。一旦建立了如此广义的理论框架,研究人员将构建和评估受ES最近经验发现的启发的模型,包括考虑到对消费者动态的影响不仅对食品养分含量不足,而且对食品养分过多的含量的影响,以及另一个考虑静态饮食混合的影响。最后,研究人员将对观察到的种群生长动态在定性和定量上挑战这些参数化的化学计量模型。为此,研究人员希望以新的理论应用的形式实现模型和实验之间的深远综合,这些应用可能允许对化学计量限制对生态系统过程的影响进行直接和定量的预测。研究人员将调查的模型可能会激发非线性微分方程和延迟微分方程的定性和计算研究领域的具有挑战性但可触及的问题。该项目将对本地和全球环境产生广泛的影响。该项目的生物学发现可能在诸如富营养化,生物燃料生产,全球变化和生物多样性等问题上具有许多实际应用。它的理论成果将提供一个可靠的用户友好框架,以构建数学模型,以允许对生态相互作用进行定量预测。此外,它将发现许多在癌症中的现成应用和其他在宿主疾病中的应用动力学和治疗模型,因为人们可以将癌细胞和病原体视为宿主生态系统中的入侵物种。调查人员的合作努力将为各种种族/种族背景的本科生和研究生提供跨学科交流和探索方面的第一手教育经验。最后,调查人员正在与亚利桑那州立大学生命科学学院奖屡获殊荣的Ask-a-Biogist计划合作,以开发与该项目相关的文章和虚拟实验,以增强中学和高中学生对生物学和数学概念的学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Kuang其他文献
A wastewater-based harmless delay differential equation model to understand the emergence of SARS-CoV-2 variants (preprint)
基于废水的无害延迟微分方程模型,用于了解 SARS-CoV-2 变种的出现(预印本)
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bruce Pell;Samantha Brozak;Tin Phan;Fuqing Wu;Yang Kuang - 通讯作者:
Yang Kuang
Globa dynamics in a stoichiometric food chain model with two limiting nutrients
具有两种限制营养素的化学计量食物链模型中的 Globa 动力学
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.3
- 作者:
Ming Chen;Meng Fan;Yang Kuang - 通讯作者:
Yang Kuang
Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking
利用人类行走过程中产生的能量实现能量自主无线传感系统
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yang Kuang;Tingwen Ruan;Z. Chew;M. Zhu - 通讯作者:
M. Zhu
Coexistence and extinction in a data-based ratio-dependent model of an insect community
基于数据的昆虫群落比率依赖模型中的共存和灭绝
- DOI:
10.3934/mbe.2020187 - 发表时间:
2020 - 期刊:
- 影响因子:2.6
- 作者:
Yang Kuang;Kaifa Wang - 通讯作者:
Kaifa Wang
Stability and Hopf bifurcation of a tumor–immune system interaction model with an immune checkpoint inhibitor
肿瘤免疫系统与免疫检查点抑制剂相互作用模型的稳定性和 Hopf 分岔
- DOI:
10.1016/j.cnsns.2022.106996 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Shujing Shi;Jicai Huang;Yang Kuang;Shigui Ruan - 通讯作者:
Shigui Ruan
Yang Kuang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Kuang', 18)}}的其他基金
eMB: Mathematical Classification of Complexity in Population Dynamics
eMB:人口动态复杂性的数学分类
- 批准号:
2325146 - 财政年份:2023
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Collaborative Research: RoL: The rules of life were made to be broken - Connecting physiology, evolutionary ecology, and mathematics to identify a Growth Rate Rule.
合作研究:RoL:生命的规则是用来被打破的 - 连接生理学、进化生态学和数学来确定增长率规则。
- 批准号:
1930728 - 财政年份:2019
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Dynamics and Applications of Cell Quota Based Plant-Pathogen Interaction Models
基于细胞配额的植物-病原体相互作用模型的动力学和应用
- 批准号:
1615879 - 财政年份:2016
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
RAPID: Data-Based Spatiotemporal Models of Ebola Epidemics and Control
RAPID:基于数据的埃博拉疫情和控制时空模型
- 批准号:
1518529 - 财政年份:2015
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
UBM: Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences at ASU
UBM:亚利桑那州立大学生物和数学科学本科生跨学科培训
- 批准号:
0436341 - 财政年份:2004
- 资助金额:
$ 49.89万 - 项目类别:
Continuing Grant
Collaborative Research: Towards an Integrative Mechanistic Theory of Within-Host Disease Dynamics
合作研究:建立宿主内疾病动态的综合机制理论
- 批准号:
0342388 - 财政年份:2004
- 资助金额:
$ 49.89万 - 项目类别:
Continuing Grant
Theoretical Frameworks for Ecological Dynamics Subject to Stoichiometric Constraints
受化学计量约束的生态动力学理论框架
- 批准号:
0077790 - 财政年份:2000
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Mathematical Sciences: Global Qualitative Analysis of Ecological Models with Delays and Diffusions
数学科学:具有延迟和扩散的生态模型的全局定性分析
- 批准号:
9306239 - 财政年份:1993
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Mathematical Sciences: Global Qualitative Analysis of Ecological Models with Time Delays and Diffusions
数学科学:具有时滞和扩散的生态模型的全局定性分析
- 批准号:
9102549 - 财政年份:1991
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
相似国自然基金
跨境数据流动的增长与福利效应:理论框架与经验证据
- 批准号:72303261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策工具、行政负担与合作生产:理论框架及基于多领域公共服务的实证研究
- 批准号:72374199
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于潜在结果框架和高维脑影像数据的因果中介分析理论和方法学研究
- 批准号:82304241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
探索时间领导对团队创新的双刃剑效应:基于创新二元性理论框架
- 批准号:72302204
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
New Experimental and Theoretical Frameworks for the Study of Nuclear Spin State Lifetimes
研究核自旋态寿命的新实验和理论框架
- 批准号:
2108205 - 财政年份:2021
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
All Women in Greek Myth: Finding Inclusive Feminist Theoretical Frameworks for Greek Mythology inReception and Popular Culture
希腊神话中的所有女性:在接受和流行文化中寻找希腊神话的包容性女权主义理论框架
- 批准号:
2480119 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Studentship
Class Development and Teacher Education by uniting Mathematics and Mathematics Education based on Theoretical Frameworks
基于理论框架的数学与数学教育相结合的班级发展与教师教育
- 批准号:
18K02527 - 财政年份:2018
- 资助金额:
$ 49.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Workshop: Present and Future Theoretical Frameworks in Neuroscience
研讨会:神经科学当前和未来的理论框架
- 批准号:
1820631 - 财政年份:2018
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Transboundary fashion: building theoretical frameworks and promoting international research collaboration
跨界时尚:构建理论框架并促进国际研究合作
- 批准号:
17K02382 - 财政年份:2017
- 资助金额:
$ 49.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)