Optical Phased Laser Arrays and Their Functionality

光学相控激光阵列及其功能

基本信息

  • 批准号:
    1509845
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Title: Coupling Multiple Semiconductor Lasers in a Single Chip for Applications of Fast Optical Data Transmission or High Power OperationSemiconductor lasers have an increasingly significant impact on many aspects of our daily lives, as well as the economy and security of our nation. The internet relies upon tiny lasers to transmit information originating from our smart phones and computers through optical fiber to destinations around the world, while the low cost manufacture automobiles, planes, and consumer goods require lasers for precision cutting and welding. To continue the expansion and improve the performance of the internet, or to further reduce manufacturing costs, improved performance of the properties of semiconductor lasers are necessary. Conventional approaches for further improvements are not obvious, whereby for both high speed data transmission as well as high power laser light output the laser manufacturing industry are near the limits of performance, in technology areas that are accustomed to an order of magnitude increase every few years or less. Therefore new ideas and paradigms are needed to break through these performance barriers. The research of this project seeks to develop new semiconductor laser chips that will address faster optical transmission of data as well as increased laser output power. The ability to distribute greater amounts of digital data over optical fiber with orders of magnitude less electricity and at faster rates, would be a key enabler for data centers, which has been identified in a recent National Academy of Engineering report as a critical U.S. challenge. High power lasers will also lead to more reliable manufacturing processes and lower cost production, or more compact laser sources for display applications. Finally, the development of high brightness lasers could also enable a new generation of directed energy weapons for enhanced U.S. security. This research program incorporates design, simulation, fabrication, and characterization of semiconductor lasers to challenge and educate a diverse group of undergraduate and graduate students in electrical engineering in both classroom and laboratory experiences.The approach of this research is to develop multiple lasers within a single semiconductor chip to act together in a coherently coupled manner. Specifically, the light wavelength and phase of each of the lasers in the array will be controlled in such a manner that all of the laser beams are combined together coherently. The coherent combination of the lasers does not simply result in the addition of the beams, but in fact the overall output light intensity increases as the square of the number of lasers in the array. Moreover, the control of the phase of each of the lasers in an array with all of the beams coherently combined can produce a significant increase of the modulation rate (the rate of turning the laser light brighter and dimmer) for digital transmission applications. The key aspect to control the light wavelength and phase of each laser element of the array is to independently electrically contact each laser diode. The intellectual merit of this research originates from the control and manipulation of multiple quantum mechanical optical oscillators. The fabrication approaches that are used in this research project are the same as those presently employed to manufacture individual semiconductor lasers, and thus can be transferred to the laser manufacturing industry in the United States. Furthermore and perhaps most importantly, the students involved in this research will be prepared for future scientific and engineering careers in the U. S. photonics industry.
标题:在单芯片中耦合多个半导体激光器,用于快速光学数据传输或高功率操作的应用半导体激光器对我们日常生活的许多方面以及我们国家的经济和安全产生着越来越重要的影响。互联网依靠微型激光器将来自智能手机和计算机的信息通过光纤传输到世界各地,而低成本制造的汽车、飞机和消费品则需要激光器进行精密切割和焊接。为了继续扩展和提高互联网的性能,或者进一步降低制造成本,提高半导体激光器的性能是必要的。进一步改进的传统方法并不明显,因此对于高速数据传输和高功率激光输出,激光制造行业在习惯于每隔几年就会出现数量级增长的技术领域中已接近性能极限或更少。因此,需要新的想法和范例来突破这些性能障碍。该项目的研究旨在开发新型半导体激光芯片,以解决更快的数据光学传输以及提高激光输出功率的问题。通过光纤以更少的电量和更快的速率分发大量数字数据的能力将成为数据中心的关键推动因素,美国国家工程院最近的一份报告将其视为美国面临的一项重大挑战。高功率激光器还将带来更可靠的制造工艺和更低的生产成本,或者用于显示应用的更紧凑的激光源。最后,高亮度激光器的发展还可以使新一代定向能武器成为可能,从而增强美国的安全。该研究计划结合了半导体激光器的设计、模拟、制造和表征,以在课堂和实验室体验中挑战和教育电气工程领域的不同群体的本科生和研究生。这项研究的方法是在单个激光器中开发多个激光器半导体芯片以相干耦合的方式一起工作。具体而言,阵列中每个激光器的光波长和相位将被控制,使得所有激光束相干地组合在一起。激光器的相干组合并不简单地导致光束相加,实际上总体输出光强度随着阵列中激光器数量的平方而增加。此外,对所有光束相干组合的阵列中每个激光器的相位进行控制可以显着提高数字传输应用的调制速率(使激光变亮和变暗的速率)。控制阵列中每个激光元件的光波长和相位的关键方面是独立地电接触每个激光二极管。这项研究的智力价值源于对多个量子机械光学振荡器的控制和操纵。该研究项目中使用的制造方法与目前用于制造单个半导体激光器的制造方法相同,因此可以转移到美国的激光制造行业。此外,也许最重要的是,参与这项研究的学生将为未来在美国光子学行业的科学和工程职业做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kent Choquette其他文献

Kent Choquette的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kent Choquette', 18)}}的其他基金

Monolithic Active Silicon Nano-Photonics
单片活性硅纳米光子学
  • 批准号:
    0725515
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Vertical Cavity Photonic Integrated Circuits
垂直腔光子集成电路
  • 批准号:
    0122906
  • 财政年份:
    2001
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

家庭处境不利青少年非自杀性自伤潜在发展结局预测及分阶段匹配干预研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于煤泥浮选泡沫生成和衰变分阶段分析的颗粒与泡沫性质的关联机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于双模网络结构分阶段构筑柔-刚转化材料及其机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
损伤分阶段可控的高性能钢框架-支撑结构抗震机理及优化设计研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肝素-BBP分期缓释蚕丝蛋白涂层PET人工韧带对ACLR术后早期抗炎与移植物宿主整合的分阶段作用研究
  • 批准号:
    82172511
  • 批准年份:
    2021
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Adaptive Laser Induced Phased Arrays (ALIPA)
自适应激光诱导相控阵 (ALIPA)
  • 批准号:
    EP/V051814/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Laser induced 2D phased array for composite material inspection
用于复合材料检测的激光诱导二维相控阵
  • 批准号:
    2634511
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
Laser induced 2D phased array for composite material inspection
用于复合材料检测的激光诱导二维相控阵
  • 批准号:
    2881411
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
Remote, 3D ultrasonic imaging in extreme environments using 2D laser induced phased arrays
使用 2D 激光诱导相控阵在极端环境中进行远程 3D 超声成像
  • 批准号:
    EP/T012862/1
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Laser Ultrasonic Phased Arrays for Remoter Sensing in Extreme Environments
用于极端环境下遥感的激光超声相控阵
  • 批准号:
    2111046
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了