CCF (CIF): Small: Recursive Reconstruction of Sparse Signal Sequences

CCF (CIF):小:稀疏信号序列的递归重建

基本信息

  • 批准号:
    0917015
  • 负责人:
  • 金额:
    $ 27.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

Recursive Reconstruction of Sparse Signal SequencesThis research focuses on recursive algorithms for causally reconstructing a time sequence of (approximately) sparse signals from a small number of ``incoherent" linear projections. The algorithms will be useful for real-time dynamic magnetic resonance imaging (MRI) in interventional radiology applications such as image-guided surgery or in functional-MRI. MRI is currently not usable for such real-time applications due to its "relatively slow image acquisition" (large data acquisition times and/or slow image reconstruction algorithms). Other potential applications include dynamic tomography for solar imaging or real-time single-pixel video imaging.Since the recent introduction of compressive sensing (CS), the static version of the above problem has been thoroughly studied. But most existing algorithms for the dynamic problem just use CS to jointly reconstruct the entire time sequence in one go. This is a batch solution and has very high complexity. The alternative - CS at each time (simpleCS) - requires many more measurements. This research is the first to develop and analyze recursive algorithms for signal sequence reconstruction, which have the same complexity as simple CS, but which (a) achieve exact reconstruction using much fewer noise-free measurements than those needed by simple CS; (b) achieve provably smaller reconstruction error than simple CS, when using noisy measurements, especially when the number of measurements is small; and (c) are provably stable over time (reconstruction error remains bounded). Fewer measurements means reduced scan times for MRI, while recursive reconstruction means real-time imaging is possible. By exploiting the fact that sparsity patterns change slowly over time, the problem is formulated as one of compressive sensing with partially known support.CS and sequential CS are incorporated into the graduate/undergraduate curriculum and into senior-design at appropriate levels.
稀疏信号测序研究的递归重建研究重点是递归算法,用于在因果重建(大约)(大约)稀疏信号的时间序列(少量````''''不一致的线性投影中的稀疏信号。算法将在Intervention-MRI(MRI)中使用算法在Intervention-Mixriigation-trime time Dyname consrigiatientiation-trimientiation-trimiention-trimientiation-trimientiation-trimientiation-trimientiation-MRI中或在Intervention-ivection-Myliology中使用。由于其“相对较慢的图像获取”,MRI目前不可用(大型数据获取时间和/或缓慢的图像重建算法)。 CS一个GO共同重建整个时间顺序。替代方案 - 每次CS(Simpleecs) - 需要更多的测量。这项研究是第一个开发和分析信号序列重建的递归算法的研究,这些算法与简单CS具有相同的复杂性,但是(a)使用与简单CS所需的无噪声测量更少的无噪声测量来实现精确的重建; (b)在使用嘈杂的测量值时,实现比简单CS的重建误差要小,尤其是当测量数量较小时; (c)随着时间的推移证明是稳定的(重建误差保持界限)。更少的测量意味着减少MRI的扫描时间,而递归重建意味着实时成像是可能的。通过利用稀疏性模式随着时间的流逝而缓慢变化的事实,该问题被提出为具有部分已知支持的压缩感之一。CS和顺序CS被纳入研究生/本科课程中,并在适当的水平上纳入高级设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Namrata Vaswani其他文献

Robust PCA With Partial Subspace Knowledge
具有部分子空间知识的鲁棒PCA
The Wiener-Khinchin Theorem for Non-wide Sense stationary Random Processes
非广义平稳随机过程的 Wiener-Khinchin 定理
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Lu;Namrata Vaswani
  • 通讯作者:
    Namrata Vaswani
A linear classifier for Gaussian class conditional distributions with unequal covariance matrices
具有不等协方差矩阵的高斯类条件分布的线性分类器
A PARTICLE FILTER FOR TRACKING ADAPTIVE NEURAL RESPONSES IN AUDITORY CORTEX
用于跟踪听觉皮层自适应神经反应的粒子滤波器
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Jain;Mounya Elhilali;Namrata Vaswani;J. Fritz;S. Shamma
  • 通讯作者:
    S. Shamma
Provable Low Rank Phase Retrieval and Compressive PCA
可证明的低秩相位检索和压缩 PCA
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seyedehsara Nayer;Praneeth Narayanamurthy;Namrata Vaswani
  • 通讯作者:
    Namrata Vaswani

Namrata Vaswani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Namrata Vaswani', 18)}}的其他基金

CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CIF: Small: Secure and Fast Federated Low-Rank Recovery from Few Column-wise Linear, or Quadratic, Projections
CIF:小型:通过少量列线性或二次投影进行安全快速的联合低秩恢复
  • 批准号:
    2115200
  • 财政年份:
    2021
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CIF: Small: Structured High-dimensional Data Recovery from Phaseless Measurements
CIF:小型:从无相测量中恢复结构化高维数据
  • 批准号:
    1815101
  • 财政年份:
    2018
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
Distributed Recursive Robust Estimation: Theory, Algorithms and Applications in Single and Multi-Camera Computer Vision
分布式递归鲁棒估计:单相机和多相机计算机视觉中的理论、算法和应用
  • 批准号:
    1509372
  • 财政年份:
    2015
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CIF: Small: Online Algorithms for Streaming Structured Big-Data Mining
CIF:小型:流式结构化大数据挖掘在线算法
  • 批准号:
    1526870
  • 财政年份:
    2015
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
RI: Small: Exploiting Correlated Sparsity Pattern Change in Dynamic Vision Problems
RI:小:利用动态视觉问题中的相关稀疏模式变化
  • 批准号:
    1117509
  • 财政年份:
    2011
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CIF: Small: Recursive Robust Principal Components' Analyis (PCA)
CIF:小型:递归稳健主成分分析 (PCA)
  • 批准号:
    1117125
  • 财政年份:
    2011
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
Change Detection in Nonlinear Systems and Applications in Shape Analysis
非线性系统中的变化检测及其在形状分析中的应用
  • 批准号:
    0725849
  • 财政年份:
    2007
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant

相似国自然基金

SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CCF-BSF: AF: CIF: Small: Low Complexity Error Correction
CCF-BSF:AF:CIF:小:低复杂性纠错
  • 批准号:
    1814629
  • 财政年份:
    2018
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CCF: CIF: Small: Interactive Learning from Noisy, Heterogeneous Feedback
CCF:CIF:小型:从嘈杂、异构的反馈中进行交互式学习
  • 批准号:
    1719133
  • 财政年份:
    2017
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CCF-BSF:CIF: Small: Coding for Fast Storage Access and In-Memory Computing
CCF-BSF:CIF:小型:快速存储访问和内存计算的编码
  • 批准号:
    1718389
  • 财政年份:
    2017
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
CCF-BSF: CIF: Small: Distributed Information Retrieval: Private, Reliable, and Efficient
CCF-BSF:CIF:小型:分布式信息检索:私密、可靠且高效
  • 批准号:
    1719139
  • 财政年份:
    2017
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了