Data-Driven Learning and Geometric Embedding for Reduction and Control of Complex Heterogeneous Networks
用于减少和控制复杂异构网络的数据驱动学习和几何嵌入
基本信息
- 批准号:1763070
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex systems in which multiple agents (components) affect each other dynamically are prevalent in nature and human society in different scales, such as neurons in the brain, bees in a hive, and human beings in a social network. Undesirable behavior of such systems, in the form of disease, economic collapse, rumor spreading, and social unrest, has generated considerable interest in understanding the dynamic structures of such complex networks and devising ways to control them. Despite the abundance of data, ease of access, and advances in data science, obtaining reliable models of such networks remains a very challenging problem. The scale of these emerging complex systems also poses a great difficulty. These obstacles also form a bottleneck for analyzing and engineering the dynamic structures (e.g., synchrony and clustering) and for controlling the collective behavior in such complex networks. This project will develop a unified data-driven framework to investigate fundamental questions regarding how to extract dynamics of a large-scale complex system or network from its simulation or measurement data, and how to control this system if the dynamics reconstruction is successful and reliable. The project will also support new initiatives to promote interdisciplinary education for students from traditionally underserved populations in local high schools in the city of St. Louis, MO, through the creation of summer research opportunities.By bridging systems and control theory with concepts and methods from algebraic geometry, time-series analysis, and machine learning, a unified data-driven framework will be established. Specifically, a novel approach based on spectral decomposition will be developed to extract the dynamics of a complex system and decode the topology of a complex network using its time-series data. The properties of the reconstructed network, e.g., connectivity and the coupling strength of nodes, will then be utilized to synthesize a dynamically-proximate reduced network that is tractable for control-theoretic analysis and design. Furthermore, novel topological and geometrical approaches will be derived to construct local and global embedding of high-dimensional data to low-dimensional manifolds, which will reveal hidden topological structures in large data sets and characterize transitions of flow of the underlying dynamical system. In collaboration with researchers in biology and chemistry, the network inference, dimensionality reduction, and control techniques will be applied to a diverse set of complex systems from cells to societies, for example, for decoding functional connectivity in cellular networks and analyzing social synchronization in groups of animals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多个主体(组件)动态地相互影响的复杂系统在不同尺度的自然和人类社会中普遍存在,例如大脑中的神经元、蜂巢中的蜜蜂以及社交网络中的人类。此类系统以疾病、经济崩溃、谣言传播和社会动荡等形式出现的不良行为,引起了人们对理解此类复杂网络的动态结构并设计控制它们的方法的极大兴趣。尽管数据丰富、易于访问且数据科学不断进步,但获得此类网络的可靠模型仍然是一个非常具有挑战性的问题。这些新兴复杂系统的规模也带来了很大的困难。这些障碍也形成了分析和设计动态结构(例如同步和集群)以及控制此类复杂网络中集体行为的瓶颈。该项目将开发一个统一的数据驱动框架,以研究如何从仿真或测量数据中提取大规模复杂系统或网络的动力学,以及如何控制该系统(如果动力学重建成功且可靠)的基本问题。该项目还将通过创造暑期研究机会,支持新举措,以促进密苏里州圣路易斯市当地高中传统上服务不足群体学生的跨学科教育。代数几何、时间序列分析和机器学习,将建立统一的数据驱动框架。具体来说,将开发一种基于谱分解的新方法来提取复杂系统的动态并使用其时间序列数据解码复杂网络的拓扑。然后,重建网络的属性(例如节点的连接性和耦合强度)将用于合成易于控制理论分析和设计的动态近似简化网络。此外,将推导出新的拓扑和几何方法来构建高维数据到低维流形的局部和全局嵌入,这将揭示大数据集中隐藏的拓扑结构并表征底层动力系统的流动转变。与生物学和化学研究人员合作,网络推理、降维和控制技术将应用于从细胞到社会的各种复杂系统,例如,解码细胞网络中的功能连接和分析群体中的社会同步该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Iterative Method for Optimal Control of Nonlinear Quadratic Tracking Problems
非线性二次跟踪问题最优控制的迭代方法
- DOI:10.23919/acc45564.2020.9147364
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Ning, Xin;Bomela, Walter;Li, Jr
- 通讯作者:Li, Jr
Model Learning and Knowledge Sharing for Cooperative Multiagent Systems in Stochastic Environment
随机环境下协作多智能体系统的模型学习和知识共享
- DOI:10.1109/tcyb.2019.2958912
- 发表时间:2020-01-07
- 期刊:
- 影响因子:11.8
- 作者:Wei;Vignesh Narayanan;Jr
- 通讯作者:Jr
Parallel residual projection: a new paradigm for solving linear inverse problems
并行残差投影:解决线性逆问题的新范式
- DOI:10.1038/s41598-020-69640-5
- 发表时间:2020-07-30
- 期刊:
- 影响因子:4.6
- 作者:Wei Miao;Vignesh Narayanan;Jr
- 通讯作者:Jr
Real-time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures
癫痫发作的破坏性脑电图网络的实时推理和检测
- DOI:10.1038/s41598-020-65401-6
- 发表时间:2020-05-26
- 期刊:
- 影响因子:4.6
- 作者:Walter Bomela;Shuo Wang;C. Chou;Jr
- 通讯作者:Jr
Interpretable Design of Reservoir Computing Networks Using Realization Theory
使用实现理论的油藏计算网络的可解释性设计
- DOI:10.1109/tnnls.2021.3136495
- 发表时间:2021-12-13
- 期刊:
- 影响因子:10.4
- 作者:Wei Miao;Vignesh Narayanan;Jr
- 通讯作者:Jr
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jr-Shin Li其他文献
Optimal trajectories for efficient atomic transport without final excitation
无需最终激发即可实现高效原子传输的最佳轨迹
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.9
- 作者:
J. G. Muga;E. Torrontegui;D. Stefanatos;Jr-Shin Li;Chen Xi - 通讯作者:
Chen Xi
Optimal trajectories for efficient atomic transport without final excitation
无需最终激发即可实现高效原子传输的最佳轨迹
- DOI:
10.1029/2019jb017848 - 发表时间:
2011 - 期刊:
- 影响因子:2.9
- 作者:
E. Torrontegui;D. Stefanatos;Jr-Shin Li;J. G. Muga - 通讯作者:
J. G. Muga
Jr-Shin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jr-Shin Li', 18)}}的其他基金
8th Midwest Workshop on Control and Game Theory; St. Louis, Missouri; 27-28 April 2019
第八届中西部控制与博弈论研讨会;
- 批准号:
1930038 - 财政年份:2019
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Targeted Coordination of Dynamic Populations: Fundamentals, Computational Methods, and Emerging Applications
动态群体的目标协调:基础知识、计算方法和新兴应用
- 批准号:
1810202 - 财政年份:2018
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Workshop on Brain Dynamics and Neurocontrol Engineering; St. Louis, Missouri; June 25-27, 2017
脑动力学和神经控制工程研讨会;
- 批准号:
1737818 - 财政年份:2017
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Control of Dynamic Patterns in Neuronal Networks
神经网络动态模式的控制
- 批准号:
1509342 - 财政年份:2015
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Optimal Pulse Design in Quantum Control
量子控制中的最优脉冲设计
- 批准号:
1462796 - 财政年份:2015
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Optimal Control and Sensorless Manipulation of Complex Ensemble Systems
复杂集成系统的最优控制和无传感器操纵
- 批准号:
1301148 - 财政年份:2013
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
CAREER: Ensemble Control with Applications to Spectroscopy, Imaging, and Computation
职业:系综控制及其在光谱学、成像和计算中的应用
- 批准号:
0747877 - 财政年份:2008
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
SGER: THEORY AND APPLICATIONS OF ENSEMBLE CONTROL
SGER:系综控制的理论与应用
- 批准号:
0744090 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
相似国自然基金
机理模型与数据混合驱动的空间遥操作学习控制方法研究
- 批准号:62373305
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数据驱动的冗余机器人模型学习与规划策略研究
- 批准号:62306130
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态测练数据驱动的个性化学习推荐方法研究
- 批准号:62377028
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
内生不确定性情景下数据驱动优化的端到端学习方法及应用研究
- 批准号:72371062
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
面向温湿度快速精准控制的溶液除湿空调系统数据驱动学习控制
- 批准号:62303418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
- 批准号:
10638631 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
- 批准号:
10814620 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别: