CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
基本信息
- 批准号:1714672
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harnessing effectively the power of cloud computing and the benefits of ubiquitous data collection requires parallel advances in parallel algorithms, also known as multi-agent optimization. Unfortunately, these methods are vulnerable to cyber-attacks: if one or more of the platforms used is compromised and spreads incorrect values to other servers, the answers produced will be incorrect. It is not always possible to prevent this kind of attacks from occurring by relying on authentication alone. This project studies the vulnerabilities that exist in parallel algorithms, with the intent of understanding how to detect dysfunctional agents, isolate those that are compromised and restore the system functionality. The study of vulnerabilities in decentralized computation has important ramifications that go beyond the engineering discipline. In social science multi-agent optimization is used as a model for social learning. The study of malicious behavior will capture the effect of zealots in social settings that inject false information, steering the outcome of collective decisions towards specific actions that favors their interests.
有效利用云计算的力量和无处不在的数据收集的好处需要并行算法的并行进步,也称为多代理优化。不幸的是,这些方法很容易受到网络攻击:如果所使用的一个或多个平台受到损害并将错误的值传播到其他服务器,则生成的答案将是错误的。仅依靠身份验证并不总是能够防止此类攻击的发生。该项目研究并行算法中存在的漏洞,目的是了解如何检测功能失调的代理、隔离受到损害的代理并恢复系统功能。对分散计算中的漏洞的研究具有超越工程学科的重要影响。在社会科学中,多智能体优化被用作社会学习的模型。对恶意行为的研究将捕捉社会环境中狂热分子注入虚假信息的影响,将集体决策的结果转向有利于他们利益的具体行动。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint Network Topology and Dynamics Recovery From Perturbed Stationary Points
- DOI:10.1109/tsp.2019.2929471
- 发表时间:2019-07
- 期刊:
- 影响因子:5.4
- 作者:Hoi-To Wai;A. Scaglione;B. Barzel;Amir Leshem
- 通讯作者:Hoi-To Wai;A. Scaglione;B. Barzel;Amir Leshem
Identifying Susceptible Agents in Time Varying Opinion Dynamics through Compressive Measurements
通过压缩测量识别时变意见动态中的易感代理
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wai, Hoi To;Ozgladar, Asuman E.;Scaglione, Anna
- 通讯作者:Scaglione, Anna
Blind Community Detection From Low-Rank Excitations of a Graph Filter
- DOI:10.1109/tsp.2019.2961296
- 发表时间:2018-09
- 期刊:
- 影响因子:5.4
- 作者:Hoi-To Wai;Santiago Segarra;A. Ozdaglar;A. Scaglione;A. Jadbabaie
- 通讯作者:Hoi-To Wai;Santiago Segarra;A. Ozdaglar;A. Scaglione;A. Jadbabaie
Community Inference from Graph Signals with Hidden Nodes
- DOI:10.1109/icassp.2019.8683001
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Hoi-To Wai;Yonina C. Eldar;A. Ozdaglar;A. Scaglione
- 通讯作者:Hoi-To Wai;Yonina C. Eldar;A. Ozdaglar;A. Scaglione
Accelerating incremental gradient optimization with curvature information
- DOI:10.1007/s10589-020-00183-1
- 发表时间:2018-05
- 期刊:
- 影响因子:2.2
- 作者:Hoi-To Wai;Wei Shi;César A. Uribe;A. Nedić;A. Scaglione
- 通讯作者:Hoi-To Wai;Wei Shi;César A. Uribe;A. Nedić;A. Scaglione
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Scaglione其他文献
Stochastic Dynamic Network Utility Maximization with Application to Disaster Response
随机动态网络效用最大化及其在灾难响应中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione;Nurullah Karakoç - 通讯作者:
Nurullah Karakoç
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo - 通讯作者:
Albert Rizzo
Network-Constrained Reinforcement Learning for Optimal EV Charging Control
用于最佳电动汽车充电控制的网络约束强化学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tong Wu;Anna Scaglione;Adrian;Daniel Arnold;S. Peisert - 通讯作者:
S. Peisert
Routing and data compression in sensor networks: stochastic models for sensor data that guarantee scalability
- DOI:
10.1109/isit.2003.1228188 - 发表时间:
2003-09 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione - 通讯作者:
Anna Scaglione
Statistical analysis of the capacity of MIMO frequency selective Rayleigh fading channels with arbitrary number of inputs and outputs
- DOI:
10.1109/isit.2002.1023550 - 发表时间:
2002-06 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione - 通讯作者:
Anna Scaglione
Anna Scaglione的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Scaglione', 18)}}的其他基金
I-Corps: Geospatial Trend Detection for Hydro-power and Critical Infrastructure Design
I-Corps:水电和关键基础设施设计的地理空间趋势检测
- 批准号:
2344120 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Travel Grant: Urban Tech Academy meeting on electrified multimodal transportation
旅行补助金:城市技术学院关于电气化多式联运的会议
- 批准号:
2336001 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Advancing Graph Signal Processing Techniques for Monitoring and Control of Electric Distribution Power Systems
先进的图形信号处理技术用于配电电力系统的监测和控制
- 批准号:
2210012 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
EAGER: The Identification of Social Systems Trust: Theory and Experimental Validation
EAGER:社会系统信任的识别:理论与实验验证
- 批准号:
1553746 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Renewables: A function space theory for continuous-time flexibility scheduling in electricity markets
合作研究:EAGER:可再生能源:电力市场连续时间灵活性调度的函数空间理论
- 批准号:
1549923 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
- 批准号:
1534957 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1531050 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
- 批准号:
1320065 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1011811 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Unlocking Capacity for Wireless Access Networks through Robust Cooperative Cross-Layer Design
NetS:媒介:协作研究:通过稳健的协作跨层设计释放无线接入网络的容量
- 批准号:
0905267 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
CCF-BSF: AF: CIF: Small: Low Complexity Error Correction
CCF-BSF:AF:CIF:小:低复杂性纠错
- 批准号:
1814629 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CCF-BSF:CIF: Small: Coding for Fast Storage Access and In-Memory Computing
CCF-BSF:CIF:小型:快速存储访问和内存计算的编码
- 批准号:
1718389 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CCF-BSF: CIF: Small: Distributed Information Retrieval: Private, Reliable, and Efficient
CCF-BSF:CIF:小型:分布式信息检索:私密、可靠且高效
- 批准号:
1719139 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CCF-BSF:CIF:Small:Signal Processing and Machine Learning on Manifolds, with Applications to Invariant Detection and Covariant Estimation
CCF-BSF:CIF:Small:流形上的信号处理和机器学习,及其在不变检测和协变估计中的应用
- 批准号:
1712788 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CCF-BSF: CIF: Small: Collaborative Research: Coding and Information - Theoretic Aspects of Local Data Recovery
CCF-BSF:CIF:小型:协作研究:编码和信息 - 本地数据恢复的理论方面
- 批准号:
1618603 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant