Splitting homotopy equivalences: Applications, calculations, foundations
分裂同伦等价:应用、计算、基础
基本信息
- 批准号:0904276
- 负责人:
- 金额:$ 10.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The goal of this project is to deepen and enhance our understanding of geometric topology, that is, the homeomorphism classification of closed manifolds (of dimension greater than three) within a given homotopy type. This project focuses on splitting homotopy equivalences along a two-sided codimension-one submanifold. The obstructions to this ideal situation are given by the Waldhausen Nil-groups and the Cappell UNil-groups. Hence, from an algebraic viewpoint, one theme of the project is the calculation and foundation of the splitting obstruction groups in L-theory.On the other hand, from a topological viewpoint, splitting is a special case of the coarser decomposition into big, non-simply connected pieces. The principal investigator proposes the use of these non-simply connected metablocks to study the Four-dimensional Surgery Conjecture. These metablocks allow for the more flexible notion of classifying space BsubF/subΓ for families F of small subgroups of Γ. This approach would hybridize the techniques of three isolated communities that have sprung up in the past 25 years: controlled surgery, surgery on 4-manifolds with small fundamental group, and assembly maps for families.A manifold is a smooth shape, without any sharp edges or singularities. For example, a one-dimensional manifold is a curve, and a two-dimensional manifold is a surface. Three and four-dimensional manifolds occur in physics, such as general relativity. Higher-dimensional manifolds occur in string theory and also as configuration spaces for robot motion planning. The mathematical classification of manifolds is fundamental to understanding both the global structure of our universe and the hidden routes through which a closed physical system is connected to itself.
该奖项是根据2009年《美国复苏与再投资法》(公法111-5)资助的。该项目的目的是加深和增强我们对几何拓扑的理解,即给定同义类型中的封闭歧管(大于三个)的同态分类。该项目着重于沿双面的一定次数submanifold拆分同质验证。 Waldhausen nil groups和Cappell Unil-Groups给出了这种理想情况的障碍。因此,从代数角度来看,该项目的一个主题是计算和基础,在L理论中,从拓扑角度来看,分裂是一种特殊的情况,是将较粗略分解为大型,非轻微连接的零件。主要研究者提议使用这些非紧密连接的甲库岩研究四维手术猜想。这些metablocks允许对空间bsubf/sub&gamma的更灵活的概念进行分类。适用于&伽马小组的家庭f。这种方法将杂交过去25年中三个孤立的社区的技术:受控手术,4个具有小基本组的4个manifolds手术以及家庭的组装图。A歧管是平稳的形状,没有任何尖锐的边缘或奇异性。例如,一维歧管是曲线,二维歧管是表面。物理中发生了三维和四维流形,例如一般相对论。较高的歧管出现在字符串理论中,也是机器人运动计划的配置空间。歧管的数学分类对于理解我们宇宙的全局结构和封闭物理系统与自身连接的隐藏途径至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. Bruce Hughes其他文献
C. Bruce Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. Bruce Hughes', 18)}}的其他基金
Workshop on Nil Phenomena in Topology
拓扑中零现象研讨会
- 批准号:
0715422 - 财政年份:2007
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Stratifications, Ends, and Controlled Topology
分层、末端和受控拓扑
- 批准号:
0504176 - 财政年份:2005
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Stratified Spaces and Controlled Topology
分层空间和受控拓扑
- 批准号:
9971367 - 财政年份:1999
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Controlled Topology, Group Actions and Stratified Spaces
数学科学:受控拓扑、群作用和分层空间
- 批准号:
9504759 - 财政年份:1995
- 资助金额:
$ 10.35万 - 项目类别:
Continuing Grant
Mathematical Sciences: Manifolds, Stratified Spaces, and Controlled Topology
数学科学:流形、分层空间和受控拓扑
- 批准号:
9022179 - 财政年份:1991
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Controlled Topology of Manifolds
数学科学:流形的受控拓扑
- 批准号:
8701314 - 财政年份:1987
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximate Fibrations and the Topology of Manifolds
数学科学:近似纤维化和流形拓扑
- 批准号:
8401570 - 财政年份:1984
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
相似国自然基金
RIMKLA通过激活BHMT1苏氨酸45位点磷酸化改善脂肪肝同型半胱氨酸和脂质代谢紊乱的机制研究
- 批准号:82300957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金黄色葡萄球菌定植通过同型半胱氨酸-AKT1-S100A8/A9轴促进慢阻肺中性粒细胞炎症及肺功能下降的机制研究
- 批准号:82300059
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
S-腺苷同型半胱氨酸抑制METTL3调控m6A/miRNA-NCOA4轴致椎间盘退变的机制研究
- 批准号:82372444
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
损耗协同型导电MOFs的可控构筑与吸波机制研究
- 批准号:22375166
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于深度学习的铁电准同型相界的理论计算研究
- 批准号:12374096
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
Classification of the cohomology rings of finite Hopf spaces
有限Hopf空间上同调环的分类
- 批准号:
11640083 - 财政年份:1999
- 资助金额:
$ 10.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation groups and groups of self homotopy equivalences
变换群和自同伦等价群
- 批准号:
62540048 - 财政年份:1987
- 资助金额:
$ 10.35万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Mathematical Sciences: Homotopy Equivalences and Homeomorphisms of 3-Manifolds
数学科学:3-流形的同伦等价和同态
- 批准号:
8420067 - 财政年份:1985
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Ce Dimension-Raising Problem; Self-Homotopy-Equivalences AndAutomorphisms of Manifolds
Ce 升维问题;
- 批准号:
8101886 - 财政年份:1981
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Group of self-homotopy-equivalences
自同伦等价群
- 批准号:
56740032 - 财政年份:1981
- 资助金额:
$ 10.35万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)