Integrable Systems, Operator Determinants, and Probabilistic Models

可积系统、算子决定因素和概率模型

基本信息

  • 批准号:
    0854934
  • 负责人:
  • 金额:
    $ 30.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The main activity of the project is the analysis of limit laws for certain stochastic growth models/interacting particle systems and magnetic spin chains: the asymmetric simple exclusion process (ASEP) and the quantum-mechanical Heisenberg-Ising spin chain. The objective is to use the techniques of integrable systems, combinatorics, operator theory, and asymptotic analysis to understand, and to derive new results for, these probabilkistic models. One of the basic problems of ASEP is the study of height (or current) fluctuations, in particular to classify various limiting distributions that arise. It is conjectured (KPZ universality) that the fluctuations are universal for a large class of growth models. The PI and Craig A. Tracy established KPZ universality for ASEP with step initial condition, a result that required some new combinatorial identities. The project proposes the study of other initial conditions, in particular Bernoulli initial condition, which would require a better understanding of the combinatorial identities. For the Heisenberg-Ising model the focus will be on the dynamics of domain wall growth. The method will entail a novel use of the Bethe Ansatz that avoids the awkward spectral theory of the Heisenberg-Ising Hamiltonian.The project would have broad impact in other areas of mathematics and science.The ideas and techniques coming from random matrix theory and integrable systems have had an impact on such diverse subjects as probability, statistics, biostatistics, number theory , condensed matter physics, and engineering. In particular, the ASEP model has applications in nonequilibrium statistical physics and biological systems. In fact, the T(otally)ASEP was introduced in the late 1960s as a model of ribosome motion along mRNA. The understanding of the limit laws that arise, in particular the underlying reason for their ubiquitous occurrence, will have great value in these areas. These universal distributions were first discovered and computed in the mathematical literature and have since found many applications. It is fully expected that elucidation of these laws in ASEP will further impact the applied areas -- not only to create new techniques to solve long-standing problems in the above-mentioned fields but also to proviude new and unexpected applications.
该项目的主要活动是分析某些随机增长模型/相互作用粒子系统和磁自旋链的极限定律:不对称简单排除过程(ASEP)和量子力学海森堡-伊辛自旋链。目标是使用可积系统、组合学、算子理论和渐近分析技术来理解这些概率模型并得出新结果。 ASEP 的基本问题之一是研究高度(或电流)波动,特别是对出现的各种极限分布进行分类。据推测(KPZ 普遍性),波动对于一大类增长模型来说是普遍的。 PI 和 Craig A. Tracy 在步骤初始条件下建立了 ASEP 的 KPZ 普适性,这一结果需要一些新的组合恒等式。该项目建议研究其他初始条件,特别是伯努利初始条件,这需要更好地理解组合恒等式。对于海森堡-伊辛模型,重点将放在磁畴壁生长的动态上。该方法将需要对 Bethe Ansatz 进行新颖的使用,从而避免海森堡-伊辛哈密顿量的尴尬谱理论。该项目将在数学和科学的其他领域产生广泛的影响。来自随机矩阵理论和可积系统的思想和技术对概率、统计学、生物统计学、数论、凝聚态物理和工程学等不同学科产生了影响。 特别是,ASEP 模型在非平衡统计物理和生物系统中具有应用。事实上,T(otally)ASEP 是在 20 世纪 60 年代末引入的,作为核糖体沿 mRNA 运动的模型。了解所出现的极限定律,特别是其普遍存在的根本原因,将在这些领域具有巨大的价值。这些通用分布首先在数学文献中发现和计算,此后发现了许多应用。完全可以预期,ASEP 对这些定律的阐明将进一步影响应用领域——不仅创造新技术来解决上述领域长期存在的问题,而且还提供新的和意想不到的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harold Widom其他文献

Harold Widom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harold Widom', 18)}}的其他基金

Integrable Systems, Integral Operators, and Probabilistic Models
可积系统、积分算子和概率模型
  • 批准号:
    1400248
  • 财政年份:
    2014
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Random Matrices, Integrable Systems and Related Stochastic Processes
随机矩阵、可积系统和相关随机过程
  • 批准号:
    0552388
  • 财政年份:
    2006
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
  • 批准号:
    0243982
  • 财政年份:
    2003
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
  • 批准号:
    9732687
  • 财政年份:
    1998
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Random Matrices and Spectral Asymptotics
数学科学:随机矩阵和谱渐近学研究
  • 批准号:
    9424292
  • 财政年份:
    1995
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Toeplitz and Pseudodifferential Operators
数学科学:Toeplitz 和伪微分算子的谱渐进
  • 批准号:
    9216103
  • 财政年份:
    1992
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Toeplitz andPseudodifferential Operators
数学科学:Toeplitz 和伪微分算子的谱渐进
  • 批准号:
    8822906
  • 财政年份:
    1989
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators.
数学科学:伪微分算子的谱渐进。
  • 批准号:
    8700901
  • 财政年份:
    1987
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators
数学科学:伪微分算子的谱渐进
  • 批准号:
    8601605
  • 财政年份:
    1986
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators
数学科学:伪微分算子的谱渐进
  • 批准号:
    8217052
  • 财政年份:
    1983
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Continuing Grant

相似国自然基金

屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多体系统量子态弛豫过程的研究
  • 批准号:
    12374461
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
飞行状态下发动机转子-弹性阻尼支承系统动力特性及减振性能研究
  • 批准号:
    12302066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
群体感应效应对生物强化处理系统中微生物群落构建的驱动作用研究
  • 批准号:
    52300073
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
复杂网络上非线性动力系统临界点的严格边界
  • 批准号:
    12305038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI: Operator-Automation Shared Protection for Security and Safety Assured Industrial Control Systems: Learning, Detection, and Recovery Control
ERI:操作员自动化共享保护,确保工业控制系统安全:学习、检测和恢复控制
  • 批准号:
    2301543
  • 财政年份:
    2023
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Operator algebras and dynamical systems
算子代数和动力系统
  • 批准号:
    RGPIN-2018-06855
  • 财政年份:
    2022
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras and dynamical systems
算子代数和动力系统
  • 批准号:
    CRC-2015-00121
  • 财政年份:
    2022
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Canada Research Chairs
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
  • 批准号:
    RGPIN-2019-03923
  • 财政年份:
    2022
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical systems with singularities and operator algebras
具有奇点和算子代数的动力系统
  • 批准号:
    22K03354
  • 财政年份:
    2022
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了