Integrable Systems, Integral Operators, and Probabilistic Models
可积系统、积分算子和概率模型
基本信息
- 批准号:1400248
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural phenomena are complex. The purpose of mathematical modeling is to study admittedly simpler versions of what one sees in nature and extract exact results which could help explain, and sometimes predict, events in the real world. There are "nonequlibrium processes", in which the system is evolving, and "equlibrium processes" which model the behavior of the system after it has settled down. This project studies one of each, the "Ising model" (an equlibrium process) and the "asymmetric simple exclusion process" (a nonequlibrium process). The first is the simplest (although still quite complicated) description of ferromagnetism. It is the two-dimensional model that is studied, in particular its thermodynamic properties (in which the number of particles gets infinitely large). Magnetism and magnetic materials are pervasive throughout technology, so it is important to achieve exact mathematical results for them. The asymmetric simple exclusion process is the simplest model of phenomena in which particles interact with each other. Precisely, no two can occupy the same site at the same time. The model has far-ranging applications in nonequilibrium statistical physics, engineering, and biological systems. The one-dimensional case is what is studied (think of electrons flowing in a wire). Theoretical results of the principal investigator and collaborator have been confirmed by recent experiment. This project will result in a deeper understanding of this process and related random models in statistical physics.The asymmetric simple exclusion process (ASEP) is one of the simplest, nontrivial stochastic models in which to study transport phenomena as it models processes far from equilibrium. ASEP is closely related, in a certain scaling limit, to the Kardar-Parisi-Zhang (KPZ) equation, a nonlinear stochastic partial differential equation that is expected to describe a large class of stochastically growing interfaces. Recent work by Sasamoto, Spohn, Amir, Corwin and Quastel, using results of Tracy and the PI, have rigorously established this link between ASEP and the KPZ equation. This project builds on the work of Tracy and the PI and involves: (i) the rigorous operator-theoretic underpinnings of asymptotic results for ASEP with an open boundary; (ii) the study of a discrete time version of ASEP; and (iii) the role of Weyl groups in classifying interacting particle systems solvable by a Bethe Ansatz.
自然现象是复杂的。数学建模的目的是研究人们在自然界中看到的公认的更简单的版本,并提取准确的结果,这可以帮助解释,有时甚至预测现实世界中的事件。有“非平衡过程”,系统在其中不断发展,还有“平衡过程”,在系统稳定下来后对系统的行为进行建模。该项目研究“伊辛模型”(平衡过程)和“不对称简单排除过程”(非平衡过程)中的一个。第一个是对铁磁性最简单(尽管仍然相当复杂)的描述。研究的是二维模型,特别是其热力学性质(其中粒子数量无限大)。磁性和磁性材料在整个技术中无处不在,因此获得精确的数学结果非常重要。 非对称简单排除过程是粒子相互作用现象的最简单模型。准确地说,没有两个人可以同时占据同一地点。该模型在非平衡统计物理、工程和生物系统中具有广泛的应用。研究的是一维情况(想象一下电子在电线中流动)。主要研究者和合作者的理论结果已被最近的实验所证实。该项目将使人们更深入地了解这一过程以及统计物理学中的相关随机模型。非对称简单排除过程 (ASEP) 是研究传输现象的最简单、非平凡的随机模型之一,因为它模拟了远离平衡的过程。 ASEP 在一定比例限制下与 Kardar-Parisi-Zhang (KPZ) 方程密切相关,这是一种非线性随机偏微分方程,有望描述一大类随机增长的界面。 Sasamoto、Spohn、Amir、Corwin 和 Quastel 最近的工作利用 Tracy 和 PI 的结果,严格建立了 ASEP 和 KPZ 方程之间的这种联系。该项目建立在 Tracy 和 PI 的工作基础上,涉及: (i) 具有开放边界的 ASEP 渐近结果的严格算子理论基础; (ii) ASEP 离散时间版本的研究; (iii) Weyl 群在对可通过 Bethe Ansatz 求解的相互作用粒子系统进行分类中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harold Widom其他文献
Harold Widom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harold Widom', 18)}}的其他基金
Integrable Systems, Operator Determinants, and Probabilistic Models
可积系统、算子决定因素和概率模型
- 批准号:
0854934 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Random Matrices, Integrable Systems and Related Stochastic Processes
随机矩阵、可积系统和相关随机过程
- 批准号:
0552388 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
- 批准号:
0243982 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
- 批准号:
9732687 - 财政年份:1998
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Random Matrices and Spectral Asymptotics
数学科学:随机矩阵和谱渐近学研究
- 批准号:
9424292 - 财政年份:1995
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Toeplitz and Pseudodifferential Operators
数学科学:Toeplitz 和伪微分算子的谱渐进
- 批准号:
9216103 - 财政年份:1992
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Toeplitz andPseudodifferential Operators
数学科学:Toeplitz 和伪微分算子的谱渐进
- 批准号:
8822906 - 财政年份:1989
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators.
数学科学:伪微分算子的谱渐进。
- 批准号:
8700901 - 财政年份:1987
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators
数学科学:伪微分算子的谱渐进
- 批准号:
8601605 - 财政年份:1986
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators
数学科学:伪微分算子的谱渐进
- 批准号:
8217052 - 财政年份:1983
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
角茴香花粉配置策略对花粉精准传递和交配系统的影响
- 批准号:32360084
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
高速铁路信号控制系统网络安全威胁分析与态势预警研究
- 批准号:62301461
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑异质性、交互性、层次性的医联体系统效率评价理论、方法及应用
- 批准号:72371232
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
- 批准号:
10638114 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Investigating the molecular mechanisms of membrane remodeling by coronaviruses
研究冠状病毒膜重塑的分子机制
- 批准号:
10724399 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Compartmentalized signaling and crosstalk in airway myocytes
气道肌细胞中的区室化信号传导和串扰
- 批准号:
10718208 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
KLOTHO and Resilience to Synaptic Dysfunction in Preclinical AD
KLOTHO 和临床前 AD 中突触功能障碍的恢复力
- 批准号:
10587987 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)