CAREER: Canonical metrics, complex Monge-Ampere equations and geometric flows

职业:规范度量、复杂的 Monge-Ampere 方程和几何流

基本信息

  • 批准号:
    0847524
  • 负责人:
  • 金额:
    $ 42.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0847524Principal Investigator: Jian SongThe proposal focuses on a number of projects on canonical metricsand stability, geometric flows and complex Monge-Ampereequations. Such problems are fundamental in complex analysis andcomplex geometry, in tight relation to partial differentialequations, algebraic geometry and mathematical physics. Therecent progress and influx of new ideas from Ricci flow,pluripotential theory and the minimal model program in algebraicgeometry have unravelled a deep, rich and unifying structure.The PI will investigate the limiting behavior of the Kahler-Ricciflow and its connection to the classification theory foralgebraic varieties, inspired by Perelman's breakthrough inHamilton's program to resolve the geometrization conjecture byRicci flow. In particular, the PI aims to study the relationbetween the formation of finite time singularities of theKahler-Ricci flow and the algebraic surgery in the minimal modelprogram in algebraic geometry. The PI also intends to continuehis study on canonical metrics of Einstein type on algebraicvarieties and understand the analytic and geometric aspects ofthe singularities of such special metrics. The PI also plans tostudy the uniform approximation problem of the Monge-Amperegeodesics in infinite dimensional symmetric space by those in thefinite dimensional Bergman spaces. The precise understanding ofthis problem will give new insight into Yau's conjecture on therelation between Kahler-Einstein metrics and certain stability inthe sense of geometric invariant theory. The outcome of theproposed research will develop new tools and give profoundinsights and understanding of geometry and the structure of theuniverse.Problems in the proposal arise naturally from our attempts tounderstand nonlinear differential equations from geometry andphysics. The solutions to these problems will have strong impacton other fields of sciences such as physics and cosmology in thedeep understanding of our universe. The method of analyzingsingularities of nonlinear equations will have wide applicationsin physics, engineering and economics. Furthermore, the PI plansto disseminate the exciting research at the interface of geometryand analysis to a broad audience through lectures andworkshops. The proposed project will bring in research andteaching innovation in mathematics from various disciplines andhave an immediate beneficial effect on undergraduate and graduatestudents at Rutgers as well as in the regional mathematicalcommunity. The PI will also organize and participate in theintegrated research/education programs and activities that willpromote the education level of the nation.
摘要奖项:DMS-0847524首席研究员:Jian Song该提案重点关注一些关于规范度量和稳定性、几何流和复杂蒙日-安培方程的项目。这些问题是复分析和复几何的基础,与偏微分方程、代数几何和数学物理密切相关。 Ricci 流、多能理论和代数几何中的最小模型程序的最新进展和新思想的涌入已经揭示了一个深刻、丰富和统一的结构。PI 将研究 Kahler-Ricci 流的极限行为及其与代数分类理论的联系品种,受到佩雷尔曼在汉密尔顿方案中的突破的启发,解决了里奇流的几何化猜想。特别是,PI旨在研究Kahler-Ricci流有限时间奇点的形成与代数几何最小模型程序中的代数手术之间的关系。 PI 还打算继续他对代数簇的爱因斯坦型规范度量的研究,并了解此类特殊度量奇点的分析和几何方面。 PI还计划通过有限维Bergman空间中的问题来研究无限维对称空间中Monge-Ampergeodesics的一致逼近问题。 对这个问题的准确理解,将为丘关于卡勒-爱因斯坦度量与几何不变量理论意义上的一定稳定性之间关系的猜想提供新的见解。拟议研究的成果将开发新的工具,并为几何和宇宙结构提供深刻的见解和理解。提案中的问题自然产生于我们试图从几何和物理学理解非线性微分方程。这些问题的解决将对物理学和宇宙学等其他科学领域对我们宇宙的深入理解产生重大影响。分析非线性方程奇异性的方法将在物理、工程和经济学中具有广泛的应用。此外,PI 计划通过讲座和研讨会向广大受众传播几何和分析界面上令人兴奋的研究成果。拟议的项目将带来各个学科的数学研究和教学创新,并对罗格斯大学以及该地区数学界的本科生和研究生产生直接的有益影响。 PI还将组织和参与综合研究/教育计划和活动,以提高国家的教育水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Song其他文献

Free Space Optical Integrated Sensing and Communication Based on LFM and CPM
基于LFM和CPM的自由空间光集成传感与通信
  • DOI:
    10.1109/lcomm.2023.3332658
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunfeng Wen;Fang Yang;Jian Song;Zhu Han
  • 通讯作者:
    Zhu Han
Identifying boundary between near field and far field in ground vibration caused by surface loading
识别表面载荷引起的地面振动中近场和远场之间的边界
  • DOI:
    10.1007/s11771-014-2301-0
  • 发表时间:
    2014-08-08
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    G. Gao;Jian Song;Jun Yang
  • 通讯作者:
    Jun Yang
Prevalence and risk factors of overactive bladder syndrome in Fuzhou Chinese women
福州地区女性膀胱过度活动症的患病率及危险因素
  • DOI:
    10.1002/nau.20293
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wen;Yan;Xiaoyu He;Hui;Bo Xu;Jian Song
  • 通讯作者:
    Jian Song
Prevalence and risk factors of urinary incontinence in Fuzhou Chinese women.
中国福州女性尿失禁的患病率及危险因素。
  • DOI:
  • 发表时间:
    2005-06-05
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yan;Wen;Jian Song;Bo Xu
  • 通讯作者:
    Bo Xu
GLUT-1 and its regulating factor HIF-1 α expression in epithelial ovarian tumors : GLUT1 is associated with molecular typing and grade of epithelial ovarian cancer
GLUT-1及其调节因子HIF-1α在上皮性卵巢肿瘤中的表达:GLUT1与上皮性卵巢癌的分子分型和分级相关
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiujie Yu;Jian Song;Jing Du;Yi;Yixin Liu;Yan Shen
  • 通讯作者:
    Yan Shen

Jian Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Song', 18)}}的其他基金

Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
  • 批准号:
    2203607
  • 财政年份:
    2022
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Continuing Grant
Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
  • 批准号:
    1711439
  • 财政年份:
    2017
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Canonical Metrics, Geometric Flows and Formation of Singularities
规范度量、几何流和奇点的形成
  • 批准号:
    1406124
  • 财政年份:
    2014
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Nonlinear Geo metric Equations of Monge-Ampere Type and Canonical Metrics
Monge-Ampere型非线性几何方程与正则度量
  • 批准号:
    0808631
  • 财政年份:
    2007
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Nonlinear Geo metric Equations of Monge-Ampere Type and Canonical Metrics
Monge-Ampere型非线性几何方程与正则度量
  • 批准号:
    0604805
  • 财政年份:
    2006
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant

相似国自然基金

生态学典范分析解释变量相对重要性的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
典范一致模的表示及其分类准则
  • 批准号:
    12271393
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
  • 批准号:
    32170797
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
解析函数空间上典范解算子相关性质的研究
  • 批准号:
    12171138
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
低小平维数下对数典范环的有限生成性
  • 批准号:
    12001018
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
  • 批准号:
    2303508
  • 财政年份:
    2023
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
  • 批准号:
    23K03120
  • 财政年份:
    2023
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Canonical metrics and stability in complex geometry
复杂几何中的规范度量和稳定性
  • 批准号:
    2305296
  • 财政年份:
    2023
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Canonical metrics and stability in complex geometry
复杂几何中的规范度量和稳定性
  • 批准号:
    2305296
  • 财政年份:
    2023
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
  • 批准号:
    22K03316
  • 财政年份:
    2022
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了