Collaborative Research: EAGER: CET: The Dissolution of Li-ion Batteries and Recycling of their Precious Components.
合作研究:EAGER:CET:锂离子电池的溶解及其贵重组件的回收。
基本信息
- 批准号:2337183
- 负责人:
- 金额:$ 15.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Battery technology is essential to our modern way of life: it powers everything from cellphones to pacemakers to, more recently, vehicles. The rapidly growing demand for batteries has led to a dramatic increase in battery waste. Furthermore, increasing demand has necessitated an increase in mining minerals important for batteries, often from politically unstable locations. Battery recycling holds promise to address both problems: recycled battery waste reduces the extent of battery waste and recovers the raw materials needed to make new batteries. However, current battery recycling methods use harsh chemicals and designer processes to recover the most valuable components of battery waste, limiting both scalability and environmental sustainability. With this Clean Energy Technology (CET) EAGER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, investigators at SUNY at Albany and Youngstown State University study a new method for battery recycling that is more sustainable and more efficient. The method takes advantage of liquids that interact strongly with the materials to pull them out of battery waste, regardless of the original battery design. Those materials can then be purified using a combination of adsorption – a process by which the targeted elements selectively stick to a high-surface area powder – and electrodeposition, a process by which the remaining elements are individually removed from the initial liquid using an electric current. One challenge of the project is that the liquids need to strongly interact with the battery waste materials, but not break down the material that purifies the waste stream. The outcome of this project will significantly impact the battery industry, the environment, and the national security of the United States. It offers a way to reduce our dependence on unreliable sources for battery materials, protect the environment from excessive battery waste, and help to ensure the continued growth of the domestic battery industry and, additionally, provides state-of-the-art research experiences for undergraduate and graduate students.TECHNICAL SUMMARY:The rapid rise of battery technology has led to a critical need for new approaches to battery recycling in order to both recover precious battery metals and reduce battery waste. The long-term goal of this Clean Energy Technology (CET) EAGER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, is to develop a system capable of isolating all individual metallic components of spent lithium ion batteries (LIBs) from a common waste stream. Researchers at SUNY at Albany and Youngstown State University take advantage of solvents capable of oxidizing and coordinating to these metal components to remove them from mechanically processed battery waste (black mass). After dissolution, the metal components are separated by a combination of adsorption and electrodeposition. For adsorption, new metal-organic frameworks (MOFs) are design specifically to isolate alkali metals (e.g., Li) through reversible and selective interactions. Individual transition metals are collected by electrodeposition, which allows isolation of each transition metal based on the redox characteristics of the parent transition metal complex in solution. This investigation is expected to lead to significant scientific insights and advances: first, mechanisms for metal dissolution in coordinating solvents are elucidated, enabling the discovery of solvents more environmentally benign than those currently used for this purpose. Second, knowledge about reversible adsorption processes for cation adsorption in MOFs is advanced. Third, selective transition metal electrodeposition, in combination with the other results from this work, enable the collection of the most valuable components of batteries of any composition. The study is expected to have broader impacts in the areas of mineral mining and extraction, recycling of rare-earth-containing materials, and energy efficient metal ion separation and purification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:电池技术对我们的现代生活方式至关重要:它为从手机到起搏器再到车辆的所有功能。对电池的迅速增长导致电池浪费急剧增加。此外,增加的需求需要增加对电池重要的矿物质,通常来自可行的不稳定位置。电池回收有望解决这两个问题:回收电池浪费减少了电池浪费的程度,并恢复了制造新电池所需的原材料。但是,当前的电池回收方法使用Harmsh化学品和设计器工艺来恢复电池浪费的最有价值的组件,从而限制了可扩展性和环境可持续性。凭借NSF材料研究部固态和材料化学计划的支持,凭借这项清洁能源技术(CET)急切奖,奥尔巴尼SUNY的研究人员和Youngstown州立大学的研究人员研究了一种新的电池回收方法,用于更可持续,更有效。该方法利用了与材料强烈相互作用的液体,无论其原始电池设计如何,都可以将其从电池浪费中拉出。然后可以使用添加吸附的组合纯化这些材料 - 靶向元素选择性地粘在高表面区域粉末和电沉积过程中,该过程使用电流从初始液体中分别从初始液体中移除其余元素。该项目的一个挑战是,液体需要与电池垃圾材料进行强烈互动,但不要分解净化废物流的材料。该项目的结果将极大地影响电池行业,环境和美国国家安全。它提供了一种减少我们对电池材料不可靠来源的依赖,保护环境免受过量电池浪费的依赖,并有助于确保国内电池行业的持续增长,此外,为本科生和研究生提供了最先进的研究经验。技术总结:迅速的电池技术迅速上升使电池中的新接种量可恢复电池的新接近,并使电池恢复了巨大的电池,并使电池恢复了巨大的电池,并导致了电池的回收率。 NSF材料研究部的固态和材料化学计划支持的这项清洁能源技术(CET)急切奖的长期目标是开发一种能够将支出锂离子电池(LIB)的所有单个金属组件与普通废物流隔离的系统。奥尔巴尼和扬斯敦州立大学纽约州立大学的研究人员利用解决这些金属组件能够氧化和协调的解决方案,从机械加工的电池废物(黑色质量)中清除它们。溶解后,金属成分通过添加吸附和电沉积的组合分离。为了增加吸附,新的金属有机框架(MOF)是专门针对通过可逆和选择性相互作用隔离碱金属(例如Li)的。单个过渡金属通过电沉积收集,该金属允许根据溶液中父型过渡金属复合物的氧化还原特性分离每个过渡金属。预计这项投资将带来重大的科学见解和进步:首先,阐明了协调解决方案中金属溶解的机制,从而使发现解决方案比目前用于此目的的解决方案更加环保。其次,有关可逆吸附过程的知识是为了增加MOF中阳离子吸附的吸附过程。第三,选择性过渡金属电沉积与这项工作的其他结果结合在一起,可以收集任何组合物中最有价值的电池组件。预计该研究将对矿产采矿和提取,循环稀土材料的回收以及节能的金属离子分离和纯化产生更大的影响。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛影响的评估来审查审查标准来通过评估来获得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Feldblyum其他文献
Jeremy Feldblyum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Feldblyum', 18)}}的其他基金
MRI: Acquisition of Mass Spectrometer-Coupled Thermogravimetric Analyzer System
MRI:采集质谱仪耦合热重分析仪系统
- 批准号:
1919810 - 财政年份:2019
- 资助金额:
$ 15.03万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 15.03万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 15.03万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 15.03万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 15.03万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 15.03万 - 项目类别:
Standard Grant