Canonical Kahler metrics and complex Monge-Ampere equations

规范卡勒度量和复杂的 Monge-Ampere 方程

基本信息

  • 批准号:
    2303508
  • 负责人:
  • 金额:
    $ 15.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The project will focus on addressing open problems in geometric analysis and exploring their applications in various fields such as geometry, topology and mathematical physics. These problems play a central role in active areas of research in mathematics, including differential geometry, partial differential equations (PDE), and high-dimensional supergravity. Given the interdisciplinary nature of this project, it will foster collaborations among researchers from various disciplines, and the outcomes of the project will introduce novel approaches and provide valuable insights into the analytic study of the geometry of singular varieties. An important objective of the project is to establish a foundation for the integration of research and education, enriching the mathematics curriculum and enhancing the mathematics education at Rutgers - Newark. In line with this objective, the Principal Investigator (PI) will organize seminars and deliver lectures, aiming to contribute towards the advancement of mathematics education nationwide. The PI will also engage in mentoring at at high school, undergraduate, and graduate levels. The PI will continue to develop novel approaches in the regularity theory for linear and fully nonlinear PDEs on complex manifolds, with a specific focus on the complex Monge-Ampere equations and the associated Kahler metrics. The geometry of these metrics will be investigated from both analytic and geometric perspectives. An emphasis will be placed on studying the degeneration of a family of Kahler metrics, including the geometric convergence of Kahler-Ricci flow and other flows arising from geometry and physics. To this end, the PI will advance the techniques of auxiliary differential equations, aiming to analyze the compactness of the space of the family of Kahler metrics. Along this path, it is expected that new analytic tools such as uniform Poincare and Sobolev inequalities, as well as heat kernel estimates, will be developed. Furthermore, combined with techniques from complex geometry and algebraic geometry, these tools will be employed to investigate the asymptotic behavior of metrics near singularities. In addition, the PI will continue to explore the parabolic approach, introduced by the PI and collaborators, in high-dimensional supergravity. This exploration aims to discover new ansatz and construct new solutions to the coupled systems, thereby deepening the understanding of the underlying space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将重点解决几何分析中的开放性问题,并探索其在几何、拓扑和数学物理等各个领域的应用。这些问题在数学研究的活跃领域中发挥着核心作用,包括微分几何、偏微分方程(PDE)和高维超引力。鉴于该项目的跨学科性质,它将促进不同学科研究人员之间的合作,该项目的成果将引入新颖的方法,并为奇异品种几何的分析研究提供有价值的见解。该项目的一个重要目标是为研究与教育一体化奠定基础,丰富罗格斯-纽瓦克数学课程并加强数学教育。根据这一目标,首席研究员(PI)将组织研讨会和讲座,旨在为全国数学教育的进步做出贡献。 PI 还将参与高中、本科生和研究生级别的指导。 PI 将继续开发复杂流形上线性和完全非线性偏微分方程正则理论的新方法,特别关注复杂的 Monge-Ampere 方程和相关的 Kahler 度量。这些指标的几何形状将从分析和几何角度进行研究。 重点将放在研究卡勒度量家族的退化,包括卡勒-里奇流和由几何和物理产生的其他流的几何收敛。为此,PI将推进辅助微分方程技术,旨在分析卡勒度量族空间的紧性。沿着这条道路,预计将开发新的分析工具,例如统一庞加莱和索博列夫不等式以及热核估计。此外,结合复杂几何和代数几何的技术,这些工具将用于研究奇点附近度量的渐近行为。此外,PI 将继续探索由 PI 和合作者引入的高维超重力抛物线方法。这项探索旨在发现新的 ansatz 并为耦合系统构建新的解决方案,从而加深对底层空间的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Guo其他文献

Pleiotropy informed adaptive association test of multiple traits using genome‐wide association study summary data
使用全基因组关联研究总结数据对多个性状进行多效性知情适应性关联测试
  • DOI:
    10.1111/biom.13076
  • 发表时间:
    2019-08-02
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    M. Masotti;Bin Guo;Baolin Wu
  • 通讯作者:
    Baolin Wu
Exploit Network Coding Over GF(2q) for Multi-user Cooperative Wireless Networks
利用 GF(2q) 上的网络编码实现多用户协作无线网络
RaftFed: A Lightweight Federated Learning Framework for Vehicular Crowd Intelligence
RaftFed:用于车辆群体智能的轻量级联合学习框架
  • DOI:
    10.48550/arxiv.2310.07268
  • 发表时间:
    2023-10-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changan Yang;Yaxing Chen;Yao Zhang;Helei Cui;Zhiwen Yu;Bin Guo;Zheng Yan;Zijiang Yang
  • 通讯作者:
    Zijiang Yang
Antimicrobial and improved performance of biodegradable thermoplastic starch by using natural rosin to replace part of glycerol
天然松香替代部分甘油可生物降解热塑性淀粉的抗菌及性能改善
  • DOI:
    10.1016/j.indcrop.2022.114613
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Xin Zhang;Hongpeng Ma;Wenbo Qin;Bin Guo;Panxin Li
  • 通讯作者:
    Panxin Li
The Depreciation Method of Construction Machinery Based on Gray Relational Theory
基于灰色关联理论的工程机械折旧方法
  • DOI:
    10.4028/www.scientific.net/amr.374-377.1265
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ping Zhao;Bin Guo;P. Wang
  • 通讯作者:
    P. Wang

Bin Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Guo', 18)}}的其他基金

Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1945869
  • 财政年份:
    2019
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1710500
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant

相似国自然基金

石榴子石微区组分对矽卡岩铅锌矿床早期流体来源和性质之约束:以西藏帮布勒矿床为例
  • 批准号:
    42302098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
整性特殊凯勒结构及其在两类Hyper-Kahler度量上的应用
  • 批准号:
    12271495
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
有限时间Kahler-Ricci流与解析极小模型纲领的几何化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
岩浆源区和性质对矽卡岩成矿差异性的控制—以西天山哈勒尕提-木祖克Fe-Cu-Pb-Zn矿床为例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有曲率下界的Kahler流形
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
  • 批准号:
    22K03316
  • 财政年份:
    2022
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1945869
  • 财政年份:
    2019
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
  • 批准号:
    19J01482
  • 财政年份:
    2019
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Canonical Kahler metrics and Moduli spaces
规范卡勒度量和模空间
  • 批准号:
    18K13389
  • 财政年份:
    2018
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
  • 批准号:
    1711439
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了