NeTS-NBD-SGER: Map/Reduce for Network Traffic Analysis (MR-Net Sger)
NeTS-NBD-SGER:用于网络流量分析的 Map/Reduce (MR-Net Sger)
基本信息
- 批准号:0823774
- 负责人:
- 金额:$ 10.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0823774This project explores a new class of parallel algorithms that process very large network datasets. The goal is to be able to analyze 2.7 billion pings to map the Internet address space, process six months of flow records to understand long-term traffic trends, and search a week?s worth of packet headers to retroactively detect zero-day compromised machines. Each of these tasks requires efficient and economical processing of datasets in sizes from 50GB to several terabytes. This leap in dataset sizes by a factor of 100-1000-fold or more requires fundamentally different ways of handling network data than today?s tcpdump and ethereal on a workstation. Two recent developments make this leap possible. First, Google has demonstrated that the map/reduce abstraction be easily parallelized and run efficiently and cost-effectively over clusters of hundreds of commodity PCs. It is the basis of their web search engine and has prompted at least one open source implementation. Map/reduce is the computation engine of Google?s web search engine, increasingly being used in other applications. Map/reduce is the key to processing huge network datasets. Second, recent programs such as PREDICT make massive network datasets available. PREDICT promises to make available packet header traces, address space scans, netflow records, dark address space traffic, and voice over IP (VoIP) call records from several large ISPs. At USC researchers are collecting packet header traces and address space scans. PREDICT is the key to obtaining huge network datasets. This work is proposes as a SGER because it is both timely and, at this point, highly speculative. The researchers must characterize what network problems can be solved by map/reduce before a full proposal will be credible. This proposal is the key to demonstrating the potential impact of for map/reduce processing of huge network datasets to change our understanding of the Internet.The intellectual merit of this work is to develop a preliminary understanding of how to use map/reduce style processing for network datasets. What algorithms are applicable? What problems parallelize well or poorly? What kind of compute clusters are needed? And more generally, how can networking researchers cope with gigabyte-to-terabyte datasets that are needed to describe a billion-user Internet?The broader merit of this work is that it will lead to answers of both fundamental and practical questions facing the Internet. Considering these datasets, questions include: What does the Internet look like? At what rate is the Internet address space being consumed? How many Internet users connect with dynamic addresses? How can one respond to intrusions effectively? Can new techniques detect low-rate denial-of-service attacks, spam generation in compromised servers? Can one traceback and detect botnets control networks? More important than these specific questions is the broader question of how can one understand properties in a billion-node Internet and the petabyte-per day of traffic that flows over it.
0823774这个项目探讨了一类新的并行算法处理非常大的网络数据集。目的是能够分析27亿个ping来绘制互联网地址空间,处理六个月的流记录以了解长期的交通趋势,并搜索一周价值的数据包标头,以追溯检测零日的折磨机器。这些任务中的每一个都需要从50GB到几个tobytes的大小的数据集进行有效,经济的处理。该数据集大小的飞跃高达100-1000倍或更多,需要与今天的工作站上的TCPDUMP和空灵处理网络数据的根本不同的方法。最近的两个发展使这一飞跃成为可能。首先,Google证明了地图/减少抽象很容易平行,并在数百个商品PC的群集上有效地和成本效益。它是他们的Web搜索引擎的基础,并提示了至少一个开源实现。 MAP/RELAD是Google的Web搜索引擎的计算引擎,越来越多地用于其他应用程序中。地图/减少是处理庞大网络数据集的关键。其次,最近的程序(例如预测)使大规模网络数据集可用。预测有望使数据包标题轨迹,地址空间扫描,NetFlow记录,暗地址空间流量以及IP(VoIP)的语音(VOIP)呼叫记录来自多个大型ISP。在南加州大学,研究人员正在收集数据包标题轨迹并解决空间扫描。预测是获得庞大网络数据集的关键。这项工作是作为SGER提出的,因为它既是及时的,又是高度投机。研究人员必须表征可以通过MAP/减少解决哪些网络问题,然后再提出完整的建议是可信的。该提案是展示庞大网络数据集的地图/处理处理以改变我们对互联网的理解的潜在影响的关键。这项工作的智力优点是对如何使用MAP/减少网络数据集的MAP/减少样式处理的初步了解。什么算法适用?哪些问题可以很好地平行或不良?需要什么样的计算簇?更一般而言,如何网络研究人员如何应对描述十亿用户互联网所需的千兆字节到特比特的数据集?这项工作的更广泛的优点是,它将导致互联网面临的基本问题和实用问题的答案。考虑到这些数据集,问题包括:互联网是什么样的?互联网地址空间以什么速度消耗?有多少互联网用户与动态地址联系在一起?一个人如何有效地应对入侵?新技术是否可以检测到低速拒绝服务攻击,垃圾邮件在受损的服务器中产生?一个追溯和检测僵尸网络控制网络吗?比这些特定问题更重要的是,一个更广泛的问题是,如何了解十亿节点的互联网和每天流量流过的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Heidemann其他文献
Auditing for Racial Discrimination in the Delivery of Education Ads
教育广告投放中的种族歧视审核
- DOI:
10.1145/3630106.3659041 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Basileal Imana;A. Korolova;John Heidemann - 通讯作者:
John Heidemann
Detecting Malicious Activities with DNS Backscatter
使用 DNS 反向散射检测恶意活动
- DOI:
10.1145/2815675.2815706 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kensuke Fukuda;John Heidemann - 通讯作者:
John Heidemann
Deep Dive into NTP Pool's Popularity and Mapping
深入探讨 NTP 池的流行度和映射
- DOI:
10.1145/3639041 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
G. Moura;Marco Davids;C. Schutijser;Cristian Hesselman;John Heidemann;Georgios Smaragdakis - 通讯作者:
Georgios Smaragdakis
Privacy protection technologies: From protecting questioner to personal data anonymization
隐私保护技术:从保护提问者到个人数据匿名化
- DOI:
10.1241/johokanri.60.710 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kensuke Fukuda;John Heidemann;Abudul Qadrer;中川裕志 - 通讯作者:
中川裕志
Anycast Polarization in the Wild
野外任播极化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Rizvi;Tingshan Huang;R. Esrefoglu;John Heidemann - 通讯作者:
John Heidemann
John Heidemann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Heidemann', 18)}}的其他基金
Collaborative Research: IMR:MM-1B: Privacy in Internet Measurements Applied To WAN and Telematics
合作研究:IMR:MM-1B:应用于广域网和远程信息处理的互联网测量隐私
- 批准号:
2319409 - 财政年份:2023
- 资助金额:
$ 10.02万 - 项目类别:
Continuing Grant
IMR: RI-P: Safe And Flexible Experimental Dataset Access and Sharing-Planning (SAFED-ASP)
IMR:RI-P:安全灵活的实验数据集访问和共享规划 (SAFED-ASP)
- 批准号:
2224467 - 财政年份:2022
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Traffic Map for the Internet
合作研究:CNS 核心:媒介:互联网流量地图
- 批准号:
2212480 - 财政年份:2022
- 资助金额:
$ 10.02万 - 项目类别:
Continuing Grant
RAPID: Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (RAPID-MINSEQ)
RAPID:测量新型冠状病毒期间的互联网以评估隔离情况 (RAPID-MINSEQ)
- 批准号:
2028279 - 财政年份:2020
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
CNS Core: Small: Event Identification in Evaluation of Internet Outages
CNS 核心:小型:互联网中断评估中的事件识别
- 批准号:
2007106 - 财政年份:2020
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
CCRI: Medium: DNS, Identity, and Internet Naming for Experimentation and Research (DIINER)
CCRI:媒介:用于实验和研究的 DNS、身份和互联网命名 (DINER)
- 批准号:
1925737 - 财政年份:2019
- 资助金额:
$ 10.02万 - 项目类别:
Continuing Grant
RAPID: Interactive Internet Outages Visualization to Assess Disaster Recovery
RAPID:用于评估灾难恢复的交互式互联网中断可视化
- 批准号:
1806785 - 财政年份:2018
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
CICI: RSARC: DDoS Defense In Depth for DNS
CICI:RSARC:DNS 深度 DDoS 防御
- 批准号:
1739034 - 财政年份:2017
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
CI-P: Planning for Identity and Naming Experimentation Shared Testbed
CI-P:规划身份和命名实验共享测试台
- 批准号:
1513213 - 财政年份:2015
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
MRI: Development of an Always-Available Testbed for Underwater Networking Research
MRI:开发用于水下网络研究的始终可用的测试台
- 批准号:
0821750 - 财政年份:2008
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
相似国自然基金
效应因子NBD在菰黑粉菌侵染中的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
效应因子NBD在菰黑粉菌侵染中的作用机制
- 批准号:32202404
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
ABCC2基因NBD区突变影响MRP2亚细胞定位及降解在Dubin-Johnson综合征中的致病作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于三维打印Sr-CaS/NBD多肽缓释微球支架材料修复感染性骨缺损的实验研究
- 批准号:81601911
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
分子超声成像介导靶向多肽TMTP1示踪及治疗难治性、复发性宫颈癌的初步应用研究
- 批准号:81501530
- 批准年份:2015
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multiple roles of histones: identification of responsible regions for the activities
组蛋白的多重作用:识别活动的负责区域
- 批准号:
18K06319 - 财政年份:2018
- 资助金额:
$ 10.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of NBD-labeled peptides by using photo irradiation-induced NBD loss
利用光照射引起的 NBD 损失鉴定 NBD 标记肽
- 批准号:
17K01956 - 财政年份:2017
- 资助金额:
$ 10.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molting analysis based on the view of cell biology: mode of action of molting inhibitors and its application
基于细胞生物学视角的蜕皮分析:蜕皮抑制剂的作用方式及其应用
- 批准号:
16K08142 - 财政年份:2016
- 资助金额:
$ 10.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simultaneous analysis of highly polar pharmaceutical adulterants in slimming products by hydrophilic interaction liquid chromatography
亲水作用液相色谱法同时分析减肥产品中的高极性药物掺假物
- 批准号:
15K08818 - 财政年份:2015
- 资助金额:
$ 10.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthesis of double labeled ceramide fluorescent probes to analyze metabolism of sphingolipids
合成双标记神经酰胺荧光探针分析鞘脂代谢
- 批准号:
25670003 - 财政年份:2013
- 资助金额:
$ 10.02万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research