PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
基本信息
- 批准号:0819049
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Pan-American Advanced Studies Institutes (PASI) award, jointly supported by the NSF and the Department of Energy (DOE), will take place during the summer of 2009 at the Universidade Federal de Pernambuco in Olinda, Brazil. Organized by Bernd Ulrich of Purdue University, the PASI will address recent developments in commutative algebra and their connections to geometry. The activities will focus on the following clusters of topics central to modern commutative algebra: the homological conjectures, problems in positive and mixed characteristic, tight closure and its interaction with birational geometry, integral dependence and blowup algebras, combinatorial commutative algebra, Gröbner bases, and computational algebra, among others.The activity will promote collaborative interactions among algebraists and geometers mostly of the Western Hemisphere. The program will bring together an ideal mix of participants from graduate students to post-docs to junior and senior faculty. Expected outcomes in this PASI will include: the opportunity to forge strong and lasting ties among researchers at different stages of their careers and with diverse mathematical tastes and backgrounds. Recruitment will be done through a web-site developed for the PASI, newsletters of professional societies, and e-mail lists. Results from the PASI will be disseminated through the PASI website and a volume of proceedings of the school as a reference on which to build future activities.
这项由NSF和能源部(DOE)共同支持的泛美高级研究机构(PASI)奖将于2009年夏季在巴西奥林达的联邦De Pernambuco上举行。 PASI由普渡大学的伯恩德·乌尔里希(Bernd Ulrich)组织,将解决交换代数的最新发展及其与几何形状的联系。这些活动将集中于以下主题集中的群集,核心是现代通勤代数的中心:同源猜想,积极和混合特征的问题,紧密闭合以及与生物几何形状,积分依赖性和代数的相互作用,组合通勤代数,Gröbner基础和计算性的活动都将促进依据。西半球。该计划将汇集从研究生到毕业后再到初级和高级教师的理想组合。此PASI的预期结果将包括:在研究人员职业的不同阶段以及具有多种数学品味和背景的研究人员之间建立牢固和持久联系的机会。招聘将通过为PASI,专业社会新闻通讯和电子邮件列表开发的网站进行。 PASI的结果将通过PASI网站和学校的大量程序传播,以参考建立未来活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernd Ulrich其他文献
Multidegrees, families, and integral dependence
多学位、家庭和整体依赖
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yairon Cid‐Ruiz;C. Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Tangent star cones.
相切星锥。
- DOI:
10.1515/crll.1997.483.23 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Wolmer V. Vasconcelos;Bernd Ulrich;Aron Simis - 通讯作者:
Aron Simis
Socle degrees, resolutions, and Frobenius powers
- DOI:
10.1016/j.jalgebra.2009.04.014 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
Andrew R. Kustin;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Bernd Ulrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernd Ulrich', 18)}}的其他基金
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
- 批准号:
2201149 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
- 批准号:
1446115 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
- 批准号:
1503605 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
- 批准号:
0901367 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
- 批准号:
0901613 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
- 批准号:
0753127 - 财政年份:2008
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
- 批准号:
0501011 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
次对角代数与非交换Hp空间结构分析
- 批准号:11371233
- 批准年份:2013
- 资助金额:62.0 万元
- 项目类别:面上项目
多复变量函数空间上斜Toeplitz算子的代数性质
- 批准号:11301046
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
非交换域中多元算子组的数值不变量及相关代数结构
- 批准号:11326105
- 批准年份:2013
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
多重调和Bergman空间上Toeplitz算子的代数性质的研究
- 批准号:11201052
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
非交换投射概形及范畴等价性
- 批准号:19571054
- 批准年份:1995
- 资助金额:3.5 万元
- 项目类别:面上项目
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
- 批准号:
2302682 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant